Table of contents

  • This session has been presented May 06, 2022.

Description

  • Speaker

    Julien Devevey - ENS de Lyon

Lyubashevsky’s signatures are based on the Fiat-Shamir with aborts paradigm, whose central ingredient is the use of rejection sampling to transform (secret-key-dependent) signature samples into samples from a secret-key-independent distribution. The choice of these two underly- ing distributions is part of the rejection sampling strategy, and various instantiations have been considered up to this day. In this work, we inves- tigate which strategy leads to the most compact signatures, given signing runtime requirements. Our main contributions are as follows:<br/> (i) We prove lower bounds for compactness of signatures given signing runtime requirements, and (ii) show that these lower bounds are reached considering a new and elementary choice of distributions, namely con- tinuous uniform distributions over hyperballs. (iii) We also prove that, for any fixed pair of distributions, classic rejection sampling is the best strategy for minimizing the number of aborts, as well as (iv) propose a novel strategy that allows to fix (any) bound on the number of aborts while still guaranteeing correctness and security.<br/> lien: https://univ-rennes1-fr.zoom.us/j/97066341266?pwd=RUthOFV5cm1uT0ZCQVh6QUcrb1drQT09

Next sessions

  • Séminaire C2 à INRIA Paris

    • January 16, 2026 (10:00 - 17:00)

    • INRIA Paris

    Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ 
  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • January 23, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Show previous sessions