Description
Le but de cet exposé est de présenter de nouveaux résultats sur les minima et spectres euclidiens des corps de nombres, et ceci d'un point de vue à la fois algorithmique et théorique. Un problème très ancien en théorie des nombres consiste à savoir si un corps de nombres est euclidien, en particulier pour la norme. Lorsqu'on cherche à préciser les choses, on est amené naturellement à définir les concepts respectivement arithmétique et géométrique de minimum euclidien et de minimum inhomogène, ainsi que les concepts de spectre euclidien et de spectre inhomogène. Je présenterai une méthode générale permettant de calculer le minimum euclidien (et inhomogène) d'un corps de nombres, voire la partie supérieure de son spectre euclidien. L'algorithme, implanté pour le moment uniquement dans le cas des corps de nombres totalement réels, a permis d'enrichir de façon décisive les tables existantes du degré 2 au degré 8, et a permis de découvrir de nombreux nouveaux corps de nombres euclidiens, ainsi que de nombreux corps de nombres principaux non euclidiens pour la norme mais euclidiens en deux étapes.<br/> J'aborderai également des questions plus théoriques. Je suis en effet parvenu, à l'aide d'arguments de dynamique topologique, à établir la preuve d'anciennes conjectures essentiellement énoncées par Barnes et Swinnerton-Dyer et concernant le lien entre le spectre euclidien et le spectre inhomogène, sous la seule condition que le groupe des unités du corps considéré soit de rang strictement supérieur à 1. Une conséquence particulière des résultats obtenus est que, sous cette dernière hypothèse, l'euclidianité est décidable et que l'algorithme proposé termine. Une partie des résultats exposés a déjà été publiée au Journal für die Reine und Angewandte Mathematik, le reste le sera très prochainement dans Mathematics of Computation.
Next sessions
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞
Speaker : Johanna Loyer - Inria Saclay
At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]-
Cryptography
-
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-