Table of contents

  • This session has been presented March 02, 2007.

Description

  • Speaker

    Guillaume Hanrot - LORIA

Le problème (SVP) de trouver un vecteur non nul le plus court d'un réseau de $\R^n$ de dimension $d$ est un problème très classique ; au cours des dix dernières années, de nombreux travaux ont montré des bornes inférieures sur la complexité de ce problème. Ces résultats sont à la base des arguments de sécurité d'un certain nombre de cryptosystèmes (Ajtai-Dwork, NTRU). Le meilleur algorithme pratique pour ce problème, dû à Kannan, consiste à énumérer des points dans un ellipsoïde. Son analyse consiste classiquement à borner le nombre de points par le volume, qui est à son tour estimé par le volume du pavé circonscrit, donnant une complexité de $\tilde{O}(d^{d/2(1+o(1))})$. Nous montrons qu'une analyse plus fine conduit \`a une complexit\'e de $\tilde{O}(d^{d/(2e)(1+o(1))})$; ce résultat permet également d'améliorer la complexité des algorithmes de recherche du vecteur le plus proche (CVP), ou de calcul de bases "blocs-réduites" à la Schnorr.

Next sessions

  • CryptoVerif: a computationally-sound security protocol verifier

    • September 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Show previous sessions