Description
Dans ce travail, nous nous intéressons aux permutations complètes, c’est-à-dire aux fonctions bijectives $x\mapsto f(x)$ telles que $x\mapsto f(x)+x$ soient aussi bijectives. Plus particulièrement, nous nous intéressons aux permutations complètes sur les corps finis $\mathbb{F}_{2^n}$. En caractéristique 2, la définition des permutations complètes coincide avec celle des orthomorphismes. Nous pouvons donc utiliser cette correspondance pour mettre à jour plus de propriétés et de résultats de ces objets combinatoires. En effet, malgré la multitude de travaux se concentrant sur les permutations complètes (et orthomorphismes) apparus depuis l’introduction du concept par Mann dans les années 40, il semble que peu de propriétés générales ou de classes de telles fonctions soient connues. Parmi ces classes de fonctions, la plupart sont monômiales, binômiales voire trinômiales et/ou affines. Dans cet exposé, nous commencerons par introduire la notion de permutations complètes ainsi que les propriétés de bases, et montrerons quelques unes des applications les plus courantes. Nous verrons donc les problèmes héritée s de ces applications. Dans un second temps, nous démontrerons quelques nouvelles propriétés des permutations complètes. Nous ré-explorons aussi le lien entre polynômes de permutations cyclotomiques et permutations complètes et caractérisons complètement les ‘permutations complètes cyclotomiques’ dans le cas des corps finis en caractéristique 2. Nous conclurons en proposant, par le biais d’un certains nombre de conjectures et d’observations sur ces nouvelles classes, une extension ‘géométrique’ des permutations complètes aux partitions régulières sur les corps finis.
Next sessions
-
Présentations des nouveaux doctorants Capsule
Speaker : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Speaker : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-