Description
Les produits et puissances de codes linéaires sont une construction très basique sous-jacente à de nombreuses applications du codage en informatique théorique : algorithmes de multiplication et partage de secret arithmétique, cryptanalyse de systèmes à la McEliece, décodage algébrique, construction de réseaux euclidiens, codes quantiques, transfert inconscient... Un problème fondamental particulièrement difficile est la détermination des paramètres (dimension, distance) joints possibles d'un code et de son carré. On présentera ici essentiellement les seules bornes connues, avec un accent sur l'aspect asymptotique. La preuve de ces résultats mêle de façon intriquée combinatoire, algèbre multilinéaire, et géométrie algébrique.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-