Description
Soit A une variété abélienne de rang r sur un corps de nombres. Soit L(A,s) sa fonction L. La conjecture de Birch-Swinnerton-Dyer prévoit que quand s tend vers 1, L(A, s)/(s-1)^r tend vers une valeur qui dépend d'un certain nombre d'invariants arithmétiques de la variété. Le but de l'exposé sera d'expliquer comment calculer explicitement l'un de ces invariants, le nombre de Tamagawa. Par définition cela revient à trouver les points rationnels du groupe de composantes du modèle de Néron de A. Il s'agit d'un travail commun avec S. Bosch (Münster).
Next sessions
-
Predicting Module-Lattice Reduction
Speaker : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-