Description
In this thesis, we study two differentprimitives. Lossy trapdoor functions and zero-knwoledge proof systems.The lossy trapdoor functions (LTFs) arefunction families in which injective functionsand lossy ones are computationally indistin-guishable. Since their introduction, they havebeen found useful in constructing various cryp-tographic primitives. We give in this thesisefficient constructions of two different vari-ants of LTF: Lossy Algebraic Filter andR-LTF. With these two different variants, wecan improve the efficiency of the KDM-CCA(Key-Depended-Message Chosen-Ciphertext-Attack) encryption schemes, fuzzy extractoresand deterministic encryption.In the second part of this thesis, we in-vestigated on constructions of zero-knowledgeproof systems. We give the first logarithmic-size ring-signature with tight security usinga variant of Groth-KolhweizΣ-protocol in therandom oracle model. We also proposed onenew construction of lattice-based Designated-Verifier Non-Interactive Zero-Knowledge argu-ments (DVNIZK). Using this new construction, we build a lattice-based voting scheme in the standard model. lien: rien
Next sessions
-
La crypto-graphie et les crypto-monnaies
Speaker : Daniel Augot - INRIA Saclay—Île-de-France
De nos jours, la requête «crypto» dans un moteur de recherche renvoieaux cryptomonnaies. Mais «crypto means crypto», et on peut se poser laquestion des liens pertinents entre les deux domaines. D'un coté, le monde des cryptomonnaies et de la technologiesous-jacente s'est développé et évolue encore en dehors du mondeacadémique. Il faut suivre d'un coté des posts de blog, des fils dediscussion X[…] -
SoK: Security of the Ascon Modes
Speaker : Charlotte Lefevre - Radboud University
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…] -
Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators
Speaker : Maciej Skorski - Laboratoire Hubert Curien
The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators. While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]-
Cryptography
-
TRNG
-
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-