Description
Toute application de sur GF(q) peut se représenter par un m-uplets de polynômes de GF(q)[X1,...,Xn]. On peut ainsi définir le degré de l'application. Mais ce degré ne permet pas de décrire le comportement algébrique de l'application. Nous allons donc introduire deux autres degrés : le degré des relations de l'application et le degré residuel. Nous donnerons quelques propiétés de ces degrés. De plus l'étude se porteras ensuite sur les fonctions booléennes. Nous verrons, à travers certains expériences, le lien avec d'autres notions importantes en cryptographie comme la résiliences.
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-