Table of contents

  • This session has been presented February 23, 2018.

Description

  • Speaker

    Weiqiang Wen - ENS de Lyon

The hardness of the learning with errors (LWE) problem is one of the most fruitful resources of modern cryptography. In particular, it is one of the most prominent candidates for secure post-quantum cryptography. Understanding its quantum complexity is therefore an important goal. We show that under quantum polynomial time reductions, LWE is equivalent to a relaxed version of the dihedral coset problem (DCP), which we call extrapolated DCP (eDCP). The extent of extrapolation varies with the LWE noise rate. By considering different extents of extrapolation, our result generalizes Regev's famous proof that if DCP is in BQP (quantum poly-time) then so is LWE (FOCS'02). We also discuss a connection between eDCP and Childs and Van Dam's algorithm for generalized hidden shift problems (SODA'07). Our result implies that a BQP solution for LWE might not require the full power of solving DCP, but rather only a solution for its relaxed version, eDCP, which could be easier.

Next sessions

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • June 06, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Show previous sessions