Description
The hardness of the learning with errors (LWE) problem is one of the most fruitful resources of modern cryptography. In particular, it is one of the most prominent candidates for secure post-quantum cryptography. Understanding its quantum complexity is therefore an important goal. We show that under quantum polynomial time reductions, LWE is equivalent to a relaxed version of the dihedral coset problem (DCP), which we call extrapolated DCP (eDCP). The extent of extrapolation varies with the LWE noise rate. By considering different extents of extrapolation, our result generalizes Regev's famous proof that if DCP is in BQP (quantum poly-time) then so is LWE (FOCS'02). We also discuss a connection between eDCP and Childs and Van Dam's algorithm for generalized hidden shift problems (SODA'07). Our result implies that a BQP solution for LWE might not require the full power of solving DCP, but rather only a solution for its relaxed version, eDCP, which could be easier.
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-