Table of contents

  • This session has been presented October 07, 2005.

Description

  • Speaker

    Oded Regev - Tel Aviv University

Our main result is a reduction from worst-case lattice problems such as SVP and SIVP to a certain learning problem. This learning problem is a natural extension of the `learning from parity with error' problem to higher moduli. It can also be viewed as the problem of decoding from a random linear code. This, we believe, gives a strong indication that these problems are hard. Our reduction, however, is quantum. Hence, an efficient solution to the learning problem implies a _quantum_ algorithm for SVP and SIVP. A main open question is whether this reduction can be made classical. Using the main result, we obtain a public-key cryptosystem whose hardness is based on the worst-case quantum hardness of SVP and SIVP. Previous lattice-based public-key cryptosystems such as the one by Ajtai and Dwork were only based on unique-SVP, a special case of SVP. The new cryptosystem is much more efficient than previous cryptosystems: the public key is of size \tilde{O}(n) and encrypting a message increases its size by \tilde{O}(n) (in previous cryptosystems these values are \tilde{O}(n^4) and \tilde{O}(n^2), respectively).

Next sessions

  • CryptoVerif: a computationally-sound security protocol verifier

    • September 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Show previous sessions