Description
The LLL lattice reduction algorithm of 1982 has proven to be useful in a wide variety of fields. It can be used to approximately solve computationally difficult lattice-based problems, such as the shortest vector problem, in polynomial time. We present a new algorithm for lattice reduction which is the first algorithm to have a complexity bound which is both polynomial and quasi-linear bound in the bit-length of the input.<br/> To achieve this we present an independently interesting toolkit for analyzing incremental lattice reductions.
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-