Table of contents

  • This session has been presented May 13, 2011.

Description

  • Speaker

    Andy Novocin - ENS Lyon

The LLL lattice reduction algorithm of 1982 has proven to be useful in a wide variety of fields. It can be used to approximately solve computationally difficult lattice-based problems, such as the shortest vector problem, in polynomial time. We present a new algorithm for lattice reduction which is the first algorithm to have a complexity bound which is both polynomial and quasi-linear bound in the bit-length of the input.<br/> To achieve this we present an independently interesting toolkit for analyzing incremental lattice reductions.

Next sessions

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • June 06, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Show previous sessions