Description
We introduce key reinstallation attacks (KRACKs). These attacks abuse features of a protocol to reinstall an already in-use key, thereby resetting nonces and/or replay counters associated to this key. We show that our novel attack technique breaks several handshakes that are used in a WPA2-protected network.<br/> All protected Wi-Fi networks use the 4-way handshake to generate fresh session keys. The design of this handshake was proven secure, and over its 14-year lifetime no weaknesses have been found in it. However, contrary to this history, we show that the 4-way handshake is vulnerable to key reinstallation attacks. In such an attack, the adversary tricks a victim into reinstalling an already in-use key. This is achieved by manipulating and replaying handshake messages. When the victim reinstalls the key, the associated incremental nonce and replay counter is reset to its initial value. Apart from breaking the 4-way handshake, we also show that our key reinstallation attack breaks the group key and Fast BSS Transition (FT) handshake. The impact of our attacks depend on both the handshake being targeted, and the data-confidentiality protocol in use. Simplified, against AES-CCMP, an adversary can replay and decrypt packets, but cannot forge packets. Still, this makes it possible to hijack TCP streams and inject malicious data into them. Against WPA-TKIP and GCMP, the impact is catastrophic: an adversary can replay, decrypt, and forge arbitrary packets. Rather surprisingly, GCMP is especially affected because it uses the same authentication key in both communication directions. Finally, we confirmed our findings in practice, and found that every Wi-Fi device is vulnerable to some variant of our attacks. Notably, our attack is exceptionally devastating against Android and Linux: it forces the client into using a predictable all-zero encryption key.
Next sessions
-
La crypto-graphie et les crypto-monnaies
Speaker : Daniel Augot - INRIA Saclay—Île-de-France
De nos jours, la requête «crypto» dans un moteur de recherche renvoieaux cryptomonnaies. Mais «crypto means crypto», et on peut se poser laquestion des liens pertinents entre les deux domaines. D'un coté, le monde des cryptomonnaies et de la technologiesous-jacente s'est développé et évolue encore en dehors du mondeacadémique. Il faut suivre d'un coté des posts de blog, des fils dediscussion X[…] -
SoK: Security of the Ascon Modes
Speaker : Charlotte Lefevre - Radboud University
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…] -
Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators
Speaker : Maciej Skorski - Laboratoire Hubert Curien
The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators. While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]-
Cryptography
-
TRNG
-
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-