Table of contents

  • This session has been presented November 22, 2013.

Description

  • Speaker

    Itai Dinur - ENS

The Even-Mansour (EM) encryption scheme received a lot of attention in the last couple of years due to its exceptional simplicity and tight security proofs. The original $1$-round construction was naturally generalized into $r$-round structures with one key, two alternating keys, and completely independent keys.<br/> In this talk I will describe the first key recovery attack on the one-key 3-round version of EM which is faster than exhaustive search. I will then show how to use the new cryptanalytic techniques in order to improve the best known attacks on several concrete EM-like schemes such as the block cipher LED.<br/> The talk will be mostly self-contained and intended to a wide audience. Based on joint work with Orr Dunkelman, Nathan Keller and Adi Shamir.

Next sessions

  • SoK: Security of the Ascon Modes

    • June 20, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Charlotte Lefevre - Radboud University

    The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…]
  • Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators

    • June 27, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Maciej Skorski - Laboratoire Hubert Curien

    The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators.   While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]
    • Cryptography

    • TRNG

  • CryptoVerif: a computationally-sound security protocol verifier

    • September 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Show previous sessions