Description
Consider a set of $n$ players, each holding a value $x_1,...,x_n$, and an $n$-ary function $f$, specified as an arithmetic circuit over a finite field. How can the players compute $y=f(x_1,...,x_n)$ in such a way that no (small enough) set of dishonest players obtains any joint information about the input values of the honest players (beyond of what they can infer from $y$)? In this talk, we present a protocol that allows the players to compute an arbitrary function $f$, such that any subset of up to $t< n/2$ dishonest players do not obtain any information about the other players' inputs.<br/> Finally, we briefly sketch an extension of the protocol, which guarantees the correctness of the outcome even when the dishonest players misbehave in arbitrary manner.
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-