Table of contents

  • This session has been presented July 01, 2005.

Description

  • Speaker

    Martin Hirt - ETH Zurich

Consider a set of $n$ players, each holding a value $x_1,...,x_n$, and an $n$-ary function $f$, specified as an arithmetic circuit over a finite field. How can the players compute $y=f(x_1,...,x_n)$ in such a way that no (small enough) set of dishonest players obtains any joint information about the input values of the honest players (beyond of what they can infer from $y$)? In this talk, we present a protocol that allows the players to compute an arbitrary function $f$, such that any subset of up to $t< n/2$ dishonest players do not obtain any information about the other players' inputs.<br/> Finally, we briefly sketch an extension of the protocol, which guarantees the correctness of the outcome even when the dishonest players misbehave in arbitrary manner.

Next sessions

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • June 06, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Show previous sessions