Table of contents

  • This session has been presented May 14, 2010.

Description

  • Speaker

    Pascal Molin - Université Bordeaux I

La théorie des nombres rend nécessaire le calcul de certaines intégrales à des précisions permettant un travail arithmétique. On présentera une méthode à la fois simple, rapide et prouvée pour y parvenir. Il existe depuis une vingtaine d'années un paradigme d'intégration numérique, dit des fonctions doublement exponentielles, qui dans la pratique converge très rapidement pour des fonctions régulières. La fonction intnum sous PARI/gp implante ces idées. On donnera une interprétation de ce paradigme, et une démonstration rigoureuse, avec un terme d'erreur explicite, d'une couvergence quasi-linéaire sous des hypothèses raisonnables. On discutera l'optimalité de la méthode et l'extension de son champ d'application. Deux applications seront décrites : le calcul de périodes de variétés hyperelliptiques et celui de valeurs de fonctions L, à précision garantie arbitraire.

Next sessions

  • Séminaire C2 à INRIA Paris

    • January 16, 2026 (10:00 - 17:00)

    • INRIA Paris

    Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ 
  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • January 23, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Show previous sessions