Description
We consider the problem of designing distinguishers and nonrandomness detectors for stream ciphers using the maximum degree monomial test. We construct an improved algorithm to determine the subset of key and IV-bits used in the test. The algorithm is generic, and can be applied to any stream cipher. In addition to this, the algorithm is highly tweakable, and can be adapted depending on the desired computational complexity. We test the algorithm on the stream ciphers Grain-128a and Grain-128, and achieve significantly better results compared to an earlier greedy approach.
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-