Description
Anonymity is a primary ingredient for our digital life. Several tools have been designed to address it such as, for authentication, blind signatures, group signatures or anonymous credentials and, for confidentiality, randomizable encryption or mix-nets.<br/> When it comes to complex electronic voting schemes, random shuffling of ciphertexts with mix-nets is the only known tool. Such mix-nets are also an essential tool for anonymous routing. However, it requires huge and complex zero-knowledge proofs to guarantee the actual permutation of the initial ciphertexts. In this talk, we propose a new approach for proving correct shuffling: the mix-servers can simply randomize individual ballots, which means the ciphertexts, the signatures, and the verification keys, with an additional global proof of constant size, and the output will be publicly verifiable. The computational complexity for the mix-servers is linear in the number of ciphertexts. Verification is also linear in the number of ciphertexts, independently of the number of rounds of mixing. This leads to the most efficient technique, that is highly scalable. This is joint work with Chloé Hébant and Duong Hieu Phan.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=726372***9089&autojoin
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-