Description
in finite fields of small characteristic The difficulty of discrete logarithm computations in fields GF(q^k) depends on the relative sizes of k and q. Until recently all the cases had a sub-exponential complexity of type L(1/3), similar to the complexity of factoring. If n is the bit-size of q^k, then L(1/3) can be approximated by 2^(n^(1/3)). In 2013, Joux designed a new algorithm for constant characteristic of complexity L(1/4+o(1)), approximatively 2^(n^(1/4)). Inspired by Joux' algorithm, we propose a heuristic algorithm that provides a quasi-polynomial complexity when q is of size O(poly(k)). By quasi-polynomial, we mean a runtime of n^O(log n). Hence, small characteristic pairings have an asymptotic complexity which is inapropiate for cryptography. In addition, in practice we expect the algorithm to be much faster in the case GF(q^2k), when q and k are roughly equal. The small characteristic pairings which were previously evaluated to 128 bits of security correspond to this case, and were reevaluated to a much lower security. It allows to conclude that small characteristic pairings must be avoided in cryptography.
Next sessions
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞
Speaker : Johanna Loyer - Inria Saclay
At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]-
Cryptography
-
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-