Description
Dans de nombreux protocoles cryptographiques, notamment à base de couplages, il est nécessaire de disposer de fonctions de hachage à valeur dans le groupe des points d'une courbe elliptique (ou plus généralement dans la jacobienne d'une courbe hyperelliptique). Nous expliquerons comment il est possible de construire de telles fonctions à partir de fonctions de hachage plus classiques (à valeur dans des chaînes de bits) d'une façon qui préserve la sécurité des protocoles considérés. L'étude de ces fonctions et les preuves de sécurité associées mettent en jeu des outils mathématiques variés, depuis des calculs élémentaires dans les corps finis jusqu'à des résultats plus sophistiqués sur les sommes d'exponentielles et les fonctions L de courbes algébriques.
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-