Table of contents

  • This session has been presented September 24, 2004.

Description

  • Speaker

    Serge Vaudenay - EPFL

We introduce a new computational problem related to the interpolation of group homomorphisms which generalizes many famous cryptographic problems including discrete logarithm, Diffie-Hellman, and RSA. As an application, we propose a generic undeniable signature scheme which generalizes the MOVA schemes. Our scheme is generic in the sense that we transform a private group homomorphism from public groups G to H (the order of H being public) into an undeniable signature scheme. It is provably secure in the random oracle model provided that the interpolation problem is hard and it offers the advantage of making the signature size arbitrarily short (depending on a security level). We (im)prove some security results from MOVA. We also propose a new example with complexity similar to RSA and with 3-byte signatures.

Next sessions

  • SoK: Security of the Ascon Modes

    • June 20, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Charlotte Lefevre - Radboud University

    The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…]
  • Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators

    • June 27, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Maciej Skorski - Laboratoire Hubert Curien

    The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators.   While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]
    • Cryptography

    • TRNG

  • CryptoVerif: a computationally-sound security protocol verifier

    • September 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Show previous sessions