Table of contents

  • This session has been presented September 22, 2023.

Description

  • Speaker

    Rachelle Heim Boissier - Inria

Duplex-based authenticated encryption modes with a sufficiently large key length are proven to be secure up to the birthday bound 2^(c/2), where c is the capacity. However this bound is not known to be tight and the complexity of the best known generic attack, which is based on multicollisions, is much larger: it reaches 2^c/α where α represents a small security loss factor. There is thus an uncertainty on the true extent of security beyond the bound 2^(c/2) provided by such constructions. In this paper, we describe a new generic attack against several duplex-based AEAD modes. Our attack leverages random functions statistics and produces a forgery in time complexity O(2^(3c/4)) using negligible memory and no encryption queries. Furthermore, for some duplex-based modes, our attack recovers the secret key with a negligible amount of additional computations. Most notably, our attack breaks a security claim made by the designers of the NIST lightweight competition candidate Xoodyak. This attack is a step further towards determining the exact security provided by duplex-based constructions.

Next sessions

  • Dual attacks in code-based (and lattice-based) cryptography

    • September 19, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Charles Meyer-Hilfiger - Inria Rennes

    The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]
    • Cryptography

  • Présentations des nouveaux doctorants Capsule

    • October 03, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Alisée Lafontaine et Mathias Boucher - INRIA Rennes

    2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions"  Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens.  
  • Design of fast AES-based Universal Hash Functions and MACs

    • October 10, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Augustin Bariant - ANSSI

    Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • November 07, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

  • Some applications of linear programming to Dilithium

    • November 14, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
Show previous sessions