Description
Dans cette présentation, je m'intéresserai aux généralisations de l'algorithme de Guruswami-Sudan. Il y a deux sortes de généralisations : celle de Parvaresh et Vardy, où l'on décode plusieurs mots en même temps, qui a culminé avec les codes de Guruswami et Rudra, qui atteignent la capacité du décodage en liste, sur des gros alphabets. Ce n'est pas cette généralisation qui m'intéresse. Je vais parler de celle obtenue quand les codes eux-même sont obtenus par évaluation de polynômes multivariés, soit pour obtenir des codes produits de codes de Reed-Solomon, soit pour obtenir des codes de Reed-Muller généralisés. De nombreuses approches sont possibles pour analyser l'algorithme : bases de Gröbner, lemme de Schwartz-Zippel généralisé, et tout récemment une approche par la théorie des algèbres avec un poids. Pour finir, la meilleure méthode est d'utiliser un résultat de Kasami, Lin et Peterson, qui, dans le cas $q$-aire, permet de décoder jusqu'à la borne de Johnson $q$-aire.
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-