Table of contents

  • This session has been presented December 12, 2014.

Description

  • Speaker

    Sven Muelich - Institute of Communications Engineering, Ulm University

Cryptographic applications require random, unique and unpredictable keys. Since most cryptosystems need to access the key several times, it usually has to be stored permanently. This is a potential vulnerability regarding security, even if a protected memory is used as key storage. Implementing secure key generation and storage is therefore an important and challenging task which can be accomplished by Physical Unclonable Funtions (PUFs). PUFs are, typically digital, circuits that possess an intrinsic random- ness due to process variations which occur during manufacturing. They evaluate these variations and can therefore be used to generate secure cryptographic keys. It is not necessary to store these keys in a protected memory since they are implicitly stored in the PUF and can be repro- duced on demand. However, the results when reproducing a key vary, which can be interpreted as errors. Thus, error correction must be used in order to compensate this effect. We explain how methods from coding theory are applied in order to ensure reliable key reproduction. Previous work on this topic used stan- dard constructions, e.g. an ordinary concatenated scheme of a BCH and Repetition code. Based on this work we show how better results can be obtained using code classes and decoding principles not used for this sce- nario before. We exemplify these methods by specific code constructions which improve existing codes with respect to error probability, decoding complexity and codeword length. Examples based on Generalized Con- catenated, Reed-Muller and Reed-Solomon codes are given.

Next sessions

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • June 06, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Show previous sessions