Description
Electronic cash (e-cash) is the digital analogue of regular cash which aims at preserving users' privacy. Following Chaum's seminal work, several new features were proposed for e-cash to address the practical issues of the original primitive. Among them, divisibility has proved very useful to enable efficient storage and spendings. Unfortunately, it is also very difficult to achieve and, to date, quite a few constructions exist, all of them relying on complex mechanisms that can only be instantiated in one specific setting. In addition security models are incomplete and proofs sometimes hand-wavy.<br/> In this work, we first provide a complete security model for divisible e-cash, and we study the links with constrained pseudo-random functions (PRFs), a primitive recently formalized by Boneh and Waters. We exhibit two frameworks of divisible e-cash systems from constrained PRFs achieving some specific properties: either key homomorphism or delegability. We then formally prove these frameworks, and address two main issues in previous constructions: two essential security notions were either not considered at all or not fully proven.<br/> Indeed, we introduce the notion of clearing, which should guarantee that only the recipient of a transaction should be able to do the deposit, and we show the exculpability, that should prevent an honest user to be falsely accused, was wrong in most proofs of the previous constructions. Some can easily be repaired, but this is not the case for most complex settings such as constructions in the standard model. Consequently, we provide the first construction secure in the standard model, as a direct instantiation of our framework.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=728146***4149&autojoin
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-