Description
The problem of computing the zeta function of a variety over a finite field has attracted considerable interest in recent years, motivated in part by an application in cryptography. (In less fancy language, the problem is just to compute the number of solutions to a system of polynomial equations over a finite field.) I will discuss a new algorithm for computing zeta functions which is based upon relative p-adic cohomology. The idea is that to compute the zeta function of a single projective hypersurface, say , one puts it in a one-dimensional family of hypersurfaces. As one moves through this family, the zeta function varies in a manner which is controlled by a differential equation. One can arrange matters so that one fibre in the family has an easily computed zeta function. By solving the differential equation locally around this fibre, and using a form of analytic continuation, one can now recover the zeta function of any fibre in the family. In particular, one gets the zeta function of the original hypersurface! The key point is that because the `deformation' from the original hypersurface to the easy one is one-dimensional, the complexity of this approach is largely independent of the dimension of the hypersurface. In fact, one gets a uniform dependence on the input size over all dimensions. This contrasts starkly with existing approaches, whose performance deteriorates as the dimension increases. I believe the talk should be of interest to both cryptographers and p-adic cohomologists.
Next sessions
-
Présentations des nouveaux doctorants Capsule
Speaker : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera de "quantum lattice sieving" -
Design of fast AES-based Universal Hash Functions and MACs
Speaker : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-