Description
In this talk I will introduce a new kind of attack on cryptosystems which can be represented by an (unknown) low degree polynomial with tweakable public variables such as a plaintext or IV and fixed secret variables such as a key. Its complexity is exponential in the degree but only polynomial in the key size, and it was successfully applied to several concrete schemes. In particular, for Trivium with 672 initialization rounds, it reduces the complexity of the best known attack from a barely practical 2^{55} to a trivial 2^{19}, which can recover the full key in less than a second on a single PC.
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-