Table of contents

  • This session has been presented May 12, 2006.

Description

  • Speaker

    Serge Fehr - CWI Amsterdam

Most of todays cryptography relies on the assumption that a potential attacker cannot solve some computational problem (e.g. factor a large integer). It has been shown in the early 80's that with the use of quantum-mechanical effects, certain cryptographic tasks can be done unconditionally, i.e., secure against computationally unbounded attackers: Quantum-cryptography, and with it the hope that (m)any cryptographic task(s) can be solved this way, was born. This hope was smashed in the late 90's, when it was shown that any non-trivial cryptographic task involving two mutually distrusted parties cannot be done unconditionally by means of quantum-cryptography.<br/> We propose a new approach to circumvent this impossibility result. We construct quantum-cryptographic schemes which are secure under the sole assumption that the attacker's quantum memory is limited. This is motivated by the fact that storing even a single qubit for more than a fraction of a second seems to be out of reach with today's technology. This approach allows for practical schemes for Oblivious Transfer and for Bit Commitment.<br/> (Joint work with Ivan Damgård, Louis Salvail and Christian Schaffner)

Next sessions

  • Séminaire C2 à INRIA Paris

    • January 16, 2026 (10:00 - 17:00)

    • INRIA Paris

    Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ 
  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • January 23, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Show previous sessions