Table of contents

  • This session has been presented November 29, 2013.

Description

  • Speaker

    Gildas Avoine - IRISA

Cryptanalytic time-memory trade-offs were introduced by Hellman in 1980 in order to perform key-recovery attacks on cryptosystems. A major advance was presented at Crypto 2003 by Oechslin, with the rainbow tables that outperform Hellman's seminal work. After introducing the cryptanalytic time-memory trade-offs, we will present in this talk a new variant of tables, known as fingerprint tables, which drastically reduce the number of false alarms during the attack compared to the rainbow tables. The key point of the technique consists in storing in the tables the fingerprints of the chains instead of their endpoints.<br/> The fingerprint tables provide a time-memory trade-off that is about two times faster than the rainbow tables on usual problem sizes. We will illustrate the performance of the fingerprint tables by cracking Windows NTLM Hash Passwords.

Next sessions

  • SoK: Security of the Ascon Modes

    • June 20, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Charlotte Lefevre - Radboud University

    The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…]
  • Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators

    • June 27, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Maciej Skorski - Laboratoire Hubert Curien

    The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators.   While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]
    • Cryptography

    • TRNG

  • CryptoVerif: a computationally-sound security protocol verifier

    • September 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Show previous sessions