Table of contents

  • This session has been presented March 31, 2006.

Description

  • Speaker

    Valéry Mahé - IRMAR

Soit P(x,y) un polynôme en deux variables à coefficients réels. On suppose que P(x,y) est à valeurs positives sur R^2. Hilbert a montré que le polynôme P(x,y) s'écrit comme somme de quatres carrés dans R(x,y). Une question naturelle est de savoir si P(x,y) est une somme de trois carrés dans R(x,y). Cette question n'a pas de réponse connue en général, mais elle peut être reformulée en termes de jacobiennes. Nous expliquons d'abord comment l'étude des points de torsion R(x)-rationnels de certaines jacobiennes permet d'énoncer des formules pour écrire certains produits de la forme (y^2+a(x)^2)(y^2+b(x))(y^2+c(x))(y^2+d(x)) comme somme de trois carrés dans R(x,y) (une telle écriture n'existe pas toujours). Dans un second temps, nous donnons une famille de polynômes en deux variables P_{i}(x,y) positifs ou nuls sur R^2 de degré 8 qui ne sont pas somme de trois carrés dans R(x,y). Pour cela, nous montrons que le R(x)-rang de Mordell-Weil de la jacobienne de la courbe hyperelliptique d'équation affine z^2+P_{i}(x,y)=0 est nul.

Next sessions

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • June 06, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Show previous sessions