Description
Soit P(x,y) un polynôme en deux variables à coefficients réels. On suppose que P(x,y) est à valeurs positives sur R^2. Hilbert a montré que le polynôme P(x,y) s'écrit comme somme de quatres carrés dans R(x,y). Une question naturelle est de savoir si P(x,y) est une somme de trois carrés dans R(x,y). Cette question n'a pas de réponse connue en général, mais elle peut être reformulée en termes de jacobiennes. Nous expliquons d'abord comment l'étude des points de torsion R(x)-rationnels de certaines jacobiennes permet d'énoncer des formules pour écrire certains produits de la forme (y^2+a(x)^2)(y^2+b(x))(y^2+c(x))(y^2+d(x)) comme somme de trois carrés dans R(x,y) (une telle écriture n'existe pas toujours). Dans un second temps, nous donnons une famille de polynômes en deux variables P_{i}(x,y) positifs ou nuls sur R^2 de degré 8 qui ne sont pas somme de trois carrés dans R(x,y). Pour cela, nous montrons que le R(x)-rang de Mordell-Weil de la jacobienne de la courbe hyperelliptique d'équation affine z^2+P_{i}(x,y)=0 est nul.
Next sessions
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-