Table of contents

  • This session has been presented March 17, 2006.

Description

  • Speaker

    Dennis Hofheinz - CWI Amsterdam

Simulatability has established itself as a salient notion for proving the security of multi-party protocols since it entails strong security and compositionality guarantees, which are achieved by universally quantifying over all environmental behaviors of the analyzed protocol. As a consequence, however, protocols that are secure except for certain environmental behaviors are not simulatable, even if these behaviors are efficiently identifiable and thus can be prevented by the surrounding protocol. We propose a relaxation of simulatability by conditioning the permitted environmental behaviors, i.e., simulation is only required for environmental behaviors that fulfill explicitly stated constraints. This yields a more fine-grained security definition that is achievable for several protocols for which unconditional simulatability is too strict a notion. Although imposing restrictions on the environment destroys unconditional composability in general, we show that composition of a large class of conditionally secure protocols yields conditionally simulatable protocols again. Moreover, for several commonly investigated protocol classes we show that their composition yields protocols that are simulatable in the standard, unconditional sense.

Next sessions

  • Séminaire C2 à INRIA Paris

    • January 16, 2026 (10:00 - 17:00)

    • INRIA Paris

    Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ 
  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • January 23, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Show previous sessions