Description
Soit k un corps de nombres. En théorie des nombres, on s'intéresse souvent au problème de compter les extensions de k de degré n fixé, et de discriminant borné, en ajoutant éventuellement des conditions sur la clôture de leur groupe de Galois.<br/> Après avoir rappelé rapidement quelques résultats connus, on va présenter un travail fait en collaboration avec Henri Cohen. Le but est de compter les classes d'isomorphisme d'extensions cubiques K sur k telles que la clôture du groupe de Galois contient une sous-extension quadratique K_2 fixée. On donne une formule asymptotique explicite pour ces classes, ordonnées par la norme de leur idéal discriminant relatif.<br/> L'instrument principal est la théorie de Kummer. Le cas des extensions cubiques cycliques peut être traitée avec des méthodes similaires.
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-