Description
Dans le contexte de la cryptographie, la non-linéarité des fonctions booléennes est un critère essentiel pour résister aux attaques linéaires. Comme il y a beaucoup plus d'approximations quadratiques que d'approximations linéaires, il est nécessaire aussi de considérer la non-linéarité d'ordre 2. Dans cet exposé, nous étudions la distribution de la non-linéarité des fonctions booléennes, ainsi que celle d'ordre 2. De plus, comme les codes de Reed-Muller sont liés aux fonctions booléennes, nous étudions la relation entre la non-linéarité et le décodage au delà de la moitié de la distance minimale. Nous trouvons un seuil de décodage au delà duquel il devient impossible de décoder correctement. Ce travail est effectué en collaboration avec François Rodier.
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-