Description
Le crible algébrique est le meilleur algorithme connu pour factoriser les entiers et pour calculer des logarithmes discrets dans des corps finis de grande caractérsitique. Bien que la complexité théorique est la même dans les deux cas, la phase d'algèbre linéaire est bien plus difficile dans le cas du logarithme discret. En revanche, les corps finis non premiers ont plus de structure, si bien que de nombreuses améliorations sont disponibles. Dans cet exposé, nous tenterons de quantifier les difficultés relatives de la factorisation d'entiers, du logarithme discret dans un corps premier, et du logarithme discret dans des corps de la forme GF(p^2). Notre discussion s'appuiera sur des expériences pratiques pour des entrées de 600 bits. Bien que cette taille est désormais plus ou moins de la routine pour la factorisation, cela constitue de nouveaux records pour le logarithme discret dans les corps finis de grande caractéristique. Cet exposé s'appuie sur des travaux communs avec Bouvier, Imbert, Jeljeli, Thomé, Barbulescu, Guillevic, Morain.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-