Description
L'etude et la classification des codes autoduaux binaires a une longue histoire. Les travaux de Conway-Sloane, puis de Eric Rains, ont montre qu'il faut etudier en meme temps qu'un code $C$, son ombre $S$. Apres quelques rappels sur ces notions, nous introduirons une notion d'extremalite, qui fait intervenir le couple ($C$, $S$), et est definie par leurs polynomes enumerateurs des poids. Une propriete interessante de ces codes est de contenir des designs; cette propriete nous permet d'etablir des resultats de classification concernant les codes extremaux dans notre sens, de longueur $n$, dont l'ombre a un poids $n/2-8$, prolongeant ainsi la classification de N. Elkies des codes dont l'ombre est de poids $n/2$ et $n/2-4$.
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-