Description
Kamal Khuri-Makdisi a développé un cadre algorithmique pour calculer de façon efficace dans le groupe de Picard d'une courbe projective lisse sur un corps $k$. C'est une intéressante approche, par exemple, pour les courbes modulaires, où une représentation convenable de la courbe peut se calculer à partir d'un espace de formes modulaires. Le but de cet exposé est de montrer que ce cadre algorithmique permet de traiter quelques problèmes intéressants dans le cas où $k$ est fini. Je décrirai des algorithmes efficaces pour trouver des points rationnels au hasard selon la distribution uniforme sur une courbe et sur sa jacobienne, pour calculer le morphisme de Frobenius et l'accouplement de Frey et Rück, et pour trouver une base de la $l$-torsion du groupe de Picard ($l$ un nombre premier différent de la caractéristique de $k$).
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-