Table of contents

  • This session has been presented January 14, 2011.

Description

  • Speaker

    Peter Bruin - Orsay

Kamal Khuri-Makdisi a développé un cadre algorithmique pour calculer de façon efficace dans le groupe de Picard d'une courbe projective lisse sur un corps $k$. C'est une intéressante approche, par exemple, pour les courbes modulaires, où une représentation convenable de la courbe peut se calculer à partir d'un espace de formes modulaires. Le but de cet exposé est de montrer que ce cadre algorithmique permet de traiter quelques problèmes intéressants dans le cas où $k$ est fini. Je décrirai des algorithmes efficaces pour trouver des points rationnels au hasard selon la distribution uniforme sur une courbe et sur sa jacobienne, pour calculer le morphisme de Frobenius et l'accouplement de Frey et Rück, et pour trouver une base de la $l$-torsion du groupe de Picard ($l$ un nombre premier différent de la caractéristique de $k$).

Next sessions

  • Verification of Rust Cryptographic Implementations with Aeneas

    • February 13, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • March 06, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • April 03, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • April 10, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Show previous sessions