Description
En 2008 et 2009, Gaudry et Diem ont proposé une méthode de calcul d'indices pour la résolution du DLP sur des courbes définies sur des corps finis non premiers. On présentera dans cet exposé une variante de cette méthode permettant d'abaisser la complexité asymptotique du DLP sur $E(F_q^n)$ lorsque $\log q \leq c n3$, ainsi que l'amélioration importante apportée par l'utilisation de "traces de Groebner" pour la résolution de systèmes polynomiaux. On donnera également un exemple pratique d'application de ce calcul d'indices au problème static Diffie-Hellman assisté d'un oracle.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-