Description
En 2008 et 2009, Gaudry et Diem ont proposé une méthode de calcul d'indices pour la résolution du DLP sur des courbes définies sur des corps finis non premiers. On présentera dans cet exposé une variante de cette méthode permettant d'abaisser la complexité asymptotique du DLP sur $E(F_q^n)$ lorsque $\log q \leq c n3$, ainsi que l'amélioration importante apportée par l'utilisation de "traces de Groebner" pour la résolution de systèmes polynomiaux. On donnera également un exemple pratique d'application de ce calcul d'indices au problème static Diffie-Hellman assisté d'un oracle.
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-