Description
Groups of prime order with a bilinear structure are interesting objects for public key cryptography. In the first part of the lecture we shall explain how the pairing on points of the Jacobian variety which is usually called "Tate-pairing" can be got in a p- adic setting by the Lichtenbaum pairing. On the one hand side this setting gives us more freedom for its computation which leads to more efficiency if the genus of the underlying curve is larger than 1.<br/> On the other side it shows that the Brauer groups of local fields arises in a natural way in the world of discrete logarithms based on ideal class groups. This, and the great importance of Brauer groups for number theory, motivates that one should try to investigate them computationally. In the second part of the lecture we shall present index-calculus methods for Brauer groups with applications to the classical discrete logarithm and to the computation of Euler's totient function.
Next sessions
-
Predicting Module-Lattice Reduction
Speaker : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-