Table of contents

  • This session has been presented May 24, 2019.

Description

  • Speaker

    Alice Pellet-Mary - ENS de Lyon

Finding a short non zero vector in an Euclidean lattice is a well-studied problem which has proven useful to construct many cryptographic primitives. The current best asymptotic algorithm to find a relatively short vector in an arbitrary lattice is the BKZ algorithm. This algorithm recovers a vector which is at most $2^{n^{\alpha}}$ times larger than the shortest non zero vector in time $2^{n^{1-\alpha}}$ for any $\alpha$ between 0 and 1.<br/> In order to gain in efficiency, it is sometimes interesting to use structured lattices instead of general lattices. An example of such structured lattices are ideal lattices. One may then wonder whether, on the security front, it is easier to find short vectors in a structured lattice or not. Until 2016, there was no known algorithm which would perform better on ideal lattices than the BKZ algorithm (either classically or quantumly). In 2016 and 2017, Cramer-Ducas-Peikert-Regev and Cramer-Ducas-Wesolowski proposed a quantum algorithm that finds a $2^{\sqrt n}$ approximation of the shortest non zero vector in polynomial time. However, the BKZ algorithm remained the best algorithm in the classical setting or for approximation factor smaller than $2^{\sqrt n}$ in the quantum setting.<br/> In this talk, I will present an algorithm that extends the one of Cramer et al. and improves upon the BKZ algorithm for ideal lattices, both quantumly and classically. This algorithm is heuristic and non uniform (i.e., it requires an exponential time pre-processing).<br/> lien: http://desktop.visio.renater.fr/scopia?ID=723420***3028&autojoin

Next sessions

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • June 06, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Show previous sessions