Description
En cryptographie asymétrique, les courbes elliptiques fournissent des alternatives très compétitives aux systèmes à base de corps finis, notamment RSA. Depuis, l'introduction récente des couplages dans les protocoles, elles ne sont plus seulement compétitives mais novatrices dans la mesure où elles offrent maintenant des fonctionnalités cryptographiques uniques. La cryptographie à base de couplages pose en outre des problèmes intéressants notamment concernant la construction de courbes elliptiques. En particulier, on ne peut pas se contenter de courbes aléatoires : il faut pouvoir contrôler assez finement le cardinal des courbes en jeu, ce que l'on obtient grâce à la méthode de la multiplication complexe. Nous présenterons dans un premier temps quelques constructions de courbes dans ce contexte; cela nous amènera par la suite à considérer leurs anneaux d'endomorphismes, pour des considérations algorithmiques d'abord (méthode CM), puis pour des questions de sécurité. Nous expliquerons entre autres comment cet anneau d'endomorphisme peut être « grossit » afin d'éviter d'éventuels problèmes de sécurité.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Lightweight (AND, XOR) Implementations of Large-Degree S-boxes
Speaker : Marie Bolzer - LORIA
The problem of finding a minimal circuit to implement a given function is one of the oldest in electronics. In cryptography, the focus is on small functions, especially on S-boxes which are classically the only non-linear functions in iterated block ciphers. In this work, we propose new ad-hoc automatic tools to look for lightweight implementations of non-linear functions on up to 5 variables for[…]-
Cryptography
-
Symmetrical primitive
-
Implementation of cryptographic algorithm
-
-
Algorithms for post-quantum commutative group actions
Speaker : Marc Houben - Inria Bordeaux
At the historical foundation of isogeny-based cryptography lies a scheme known as CRS; a key exchange protocol based on class group actions on elliptic curves. Along with more efficient variants, such as CSIDH, this framework has emerged as a powerful building block for the construction of advanced post-quantum cryptographic primitives. Unfortunately, all protocols in this line of work are[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-