Description
In the 1960s, Berlekamp introduced the negacyclic codes over GF(p) and described an efficient decoder that corrects any t Lee errors, where p > 2t. We consider this family of codes, defined over the integers modulo 4. We show that if a generator polynomial for a Z4 negacyclic code C has roots a^{2j+1} for j=0,...,t, where a is a primitive 2n th root of unity in a Galois extension of Z4, then C is a t Lee error-correcting code. We present a corresponding decoding algorithm that corrects any t Lee errors. The treatment given here uses techniques from Groebner bases, although this is not essential to the decoding method.
Next sessions
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-