

Pre-Silicon Analysis of Microarchitectures Against Fault Injection Attacks

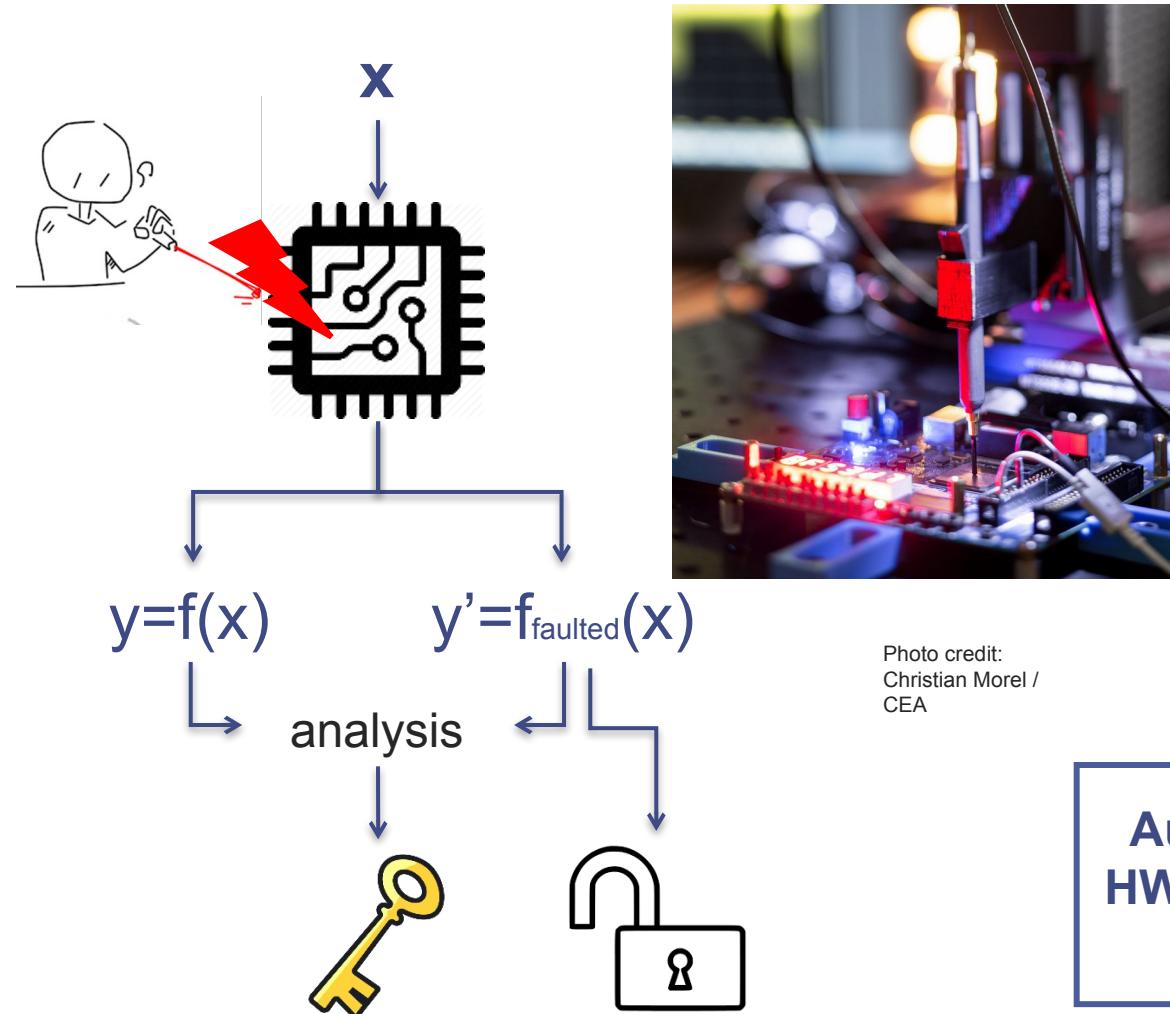
Mathieu Jan (CEA-List / Saclay), Damien Couroussé (CEA-List / Grenoble)

November 20th 2025

Outline

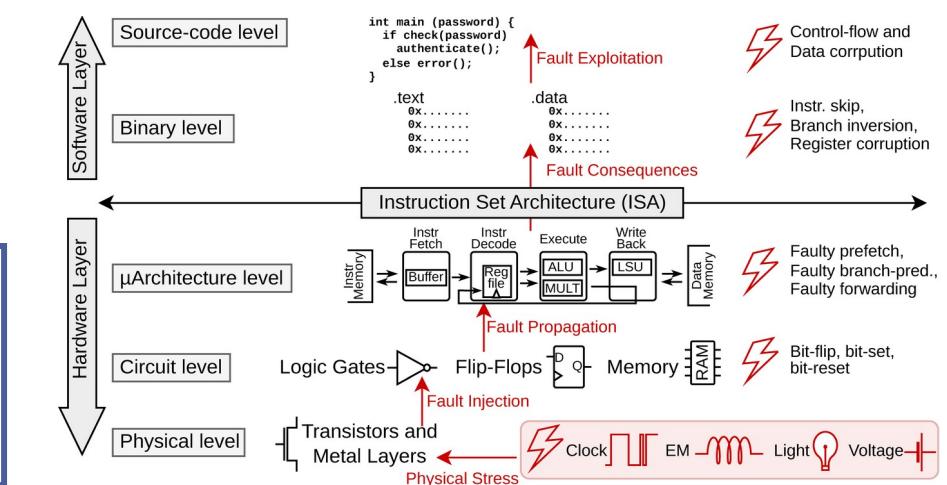
Pre-silicon Security Analysis Methodology

- Motivations
- Workflow overview
- Challenge: scalability vs. state space explosion


k-Fault Resistant Partitioning

- Overview
- OpenTitan case study

Conclusion & Next Steps


Fault Injection Attacks (FIA): motivations

Security evaluation (real system & real testbench) / security verification (pre-silicium analyses)

Turning attention to processor microarchitecture

- FIA on processor pipelines can bypass SW protections [Yuce, 2016]
- Importance of hidden microarchitectural registers and mechanisms [Laurent, 2021][Tollec, 2022]

[Yuce, 2016] Software Fault Resistance is Futile: Effective Single-Glitch Attacks. [10.1109/FDTC.2016.21](https://doi.org/10.1109/FDTC.2016.21)

[Laurent, 2021] Bridging the Gap between RTL and Software Fault Injection. [10.1145/3446214](https://doi.org/10.1145/3446214)

[Tollec, 2022] Exploration of fault effects on formal RISC-V microarchitecture models. [10.1109/FDTC57191.2022.00017](https://doi.org/10.1109/FDTC57191.2022.00017)

μArchifI+: our fault injection analysis tool

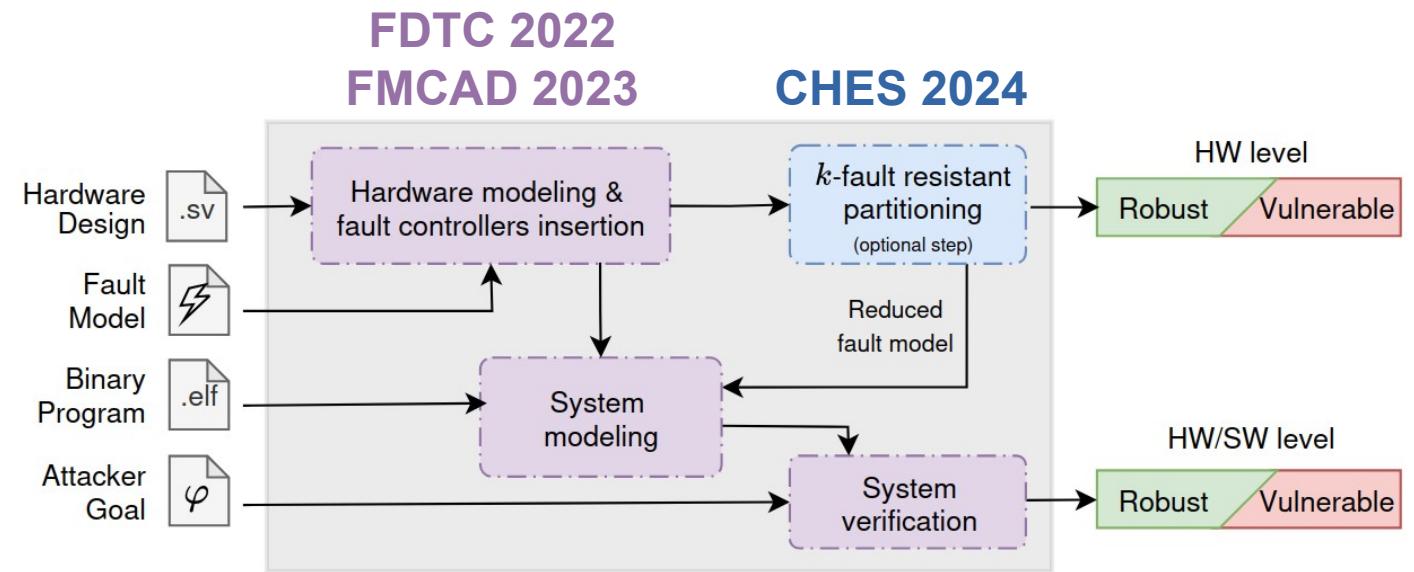
<https://list.cea.fr/fr/page/uarchifi/>

To do what?

- Identify fault effects at the HW level and check whether it generates vulnerabilities at SW level
- Prove the robustness of (HW/SW) countermeasures to secure a system
- Reduce design costs and delays (avoid HW respin)

How?

- Exhaustively analyze the impact of fault injections over systems (HW/SW) using formal methods
- Configurable fault model: (gate) location, effect, timing and fault order
- Analyses at RTL/netlist levels and agnostic to EDA flows

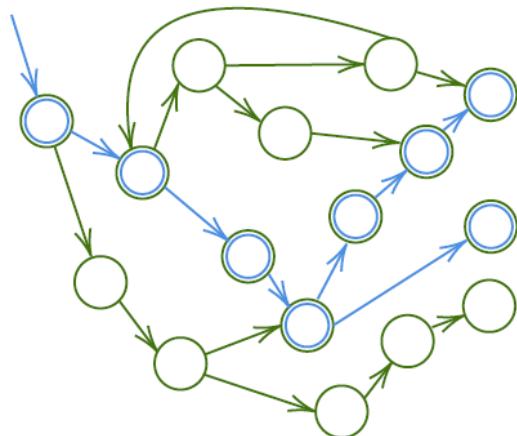

Open-source flows

μArchifI (FDTC 2022 & FMCAD 2023):

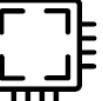
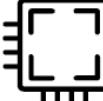
<https://github.com/CEA-LIST/uArchifI>

k-Fault-Resistant Partitioning (CHES 2024):

<https://github.com/CEA-LIST/Fault-Resistant-Partitioning>

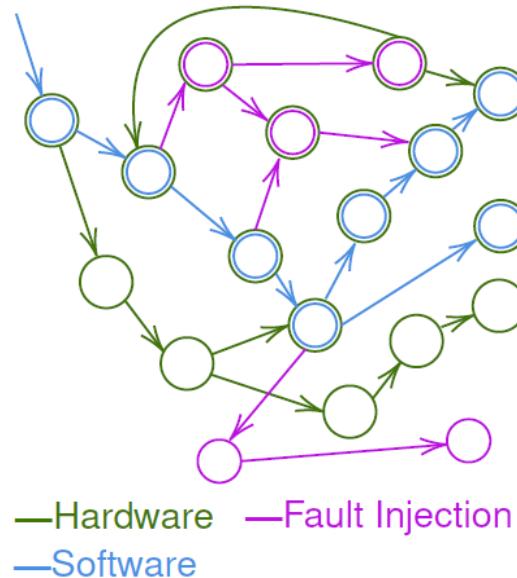

Supported platforms

- HW: OpenHW Group processors (CV32P, CV32S), OpenTitan secure element (Secure Ibex), Crypto circuits (AES-128, etc.),
- SW level: FISCC benchmark, Tiny AES, SecureBoot

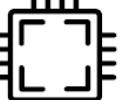
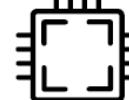


State Space: limitation of a monolithic HW/SW analysis

Factors to state space explosion

- Large HW designs, large programs (SW)
 - Focus on specific parts to be analysed
 - Simulation on other parts ...

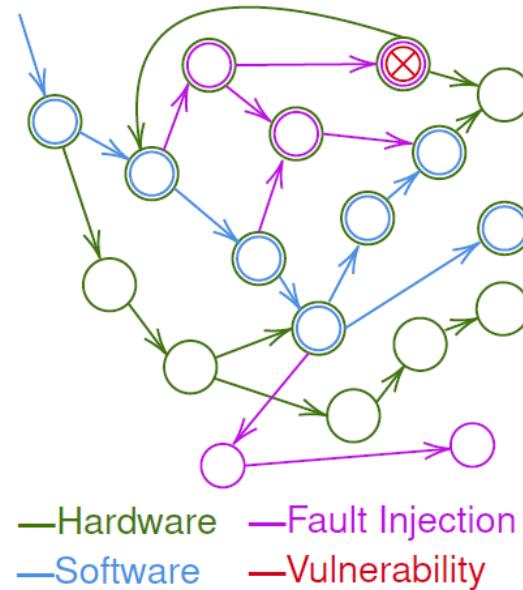

— Hardware
— Software

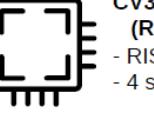
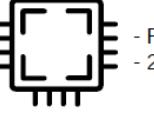
Use case names	<i>I - Robust Software</i>	<i>II - Robust Hardware</i>	<i>III - Cryptographic Software</i>
Hardware design	name: CV32E40P (Riscy) - RISC-V - 4 stages	 Secure Ibex - RISC-V - 2 stages - dual core	 Ibex - RISC-V - 2 stages
Software program	VerifyPIN V7 [Dur+16]	VerifyPIN V1 [Dur+16]	Key Schedule (AES) [kok19]
Attacker Goal φ	Bypass authentication without triggering SW alert	Bypass authentication without triggering HW alert	Set to 0 a byte in the penultimate round key
Fault model \mathcal{F}	location: Sequential logic Control Path Symbolic 60:*	location: Sequential logic Redundant CPU Core Symbolic *	location: Combinational logic Execute stage of CPU Reset *
Number of FIs N	1	5	2
BMC depth k	75	46	38
Verification results	φ is reachable	φ is unreachable	φ is unreachable



State Space: limitation of a monolithic HW/SW analysis

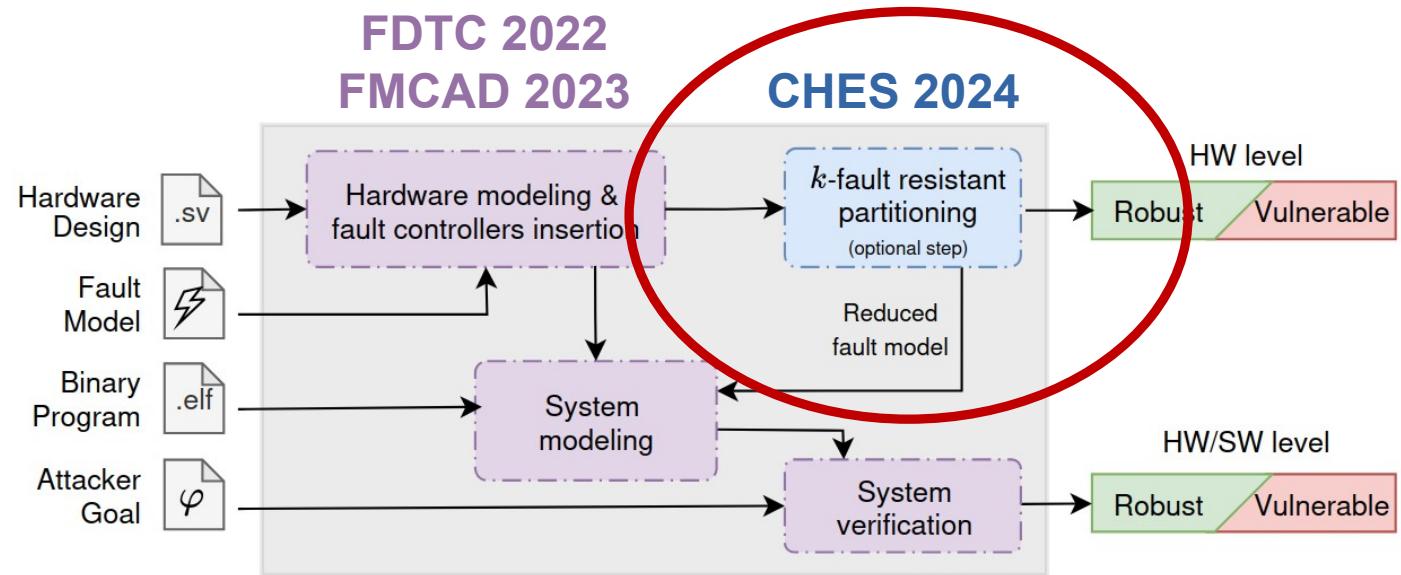
Factors to state space explosion

- Large HW designs, large programs (SW)
 - Focus on specific parts to be analysed
 - Simulation on other parts ...
- **Faults incur extra analysis complexity**
 - In particular, multiple faults: combinatorial explosion
 - Restrict areas to be faulted (combinational / sequential logics)


Leading to ~ 20 000 injections points

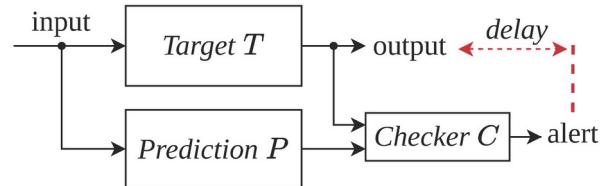


Use case names	<i>I - Robust Software</i>	<i>II - Robust Hardware</i>	<i>III - Cryptographic Software</i>
Hardware design	name: CV32E40P (Riscy) gates: 2842 FFs: 179 size*(GE): 89954	Secure Ibex - RISC-V - 2 stages - dual core 4422 211 61452	Ibex - RISC-V - 2 stages 1983 114 26327
Software program	VerifyPIN_V7 [Dur+16]	VerifyPIN_V1 [Dur+16]	Key Schedule (AES) [kok19]
Attacker Goal φ	Bypass authentication without triggering SW alert	Bypass authentication without triggering HW alert	Set to 0 a byte in the penultimate round key
Fault model \mathcal{F}	location: Sequential logic Control Path Symbolic timing: 60:*	Sequential logic Redundant CPU Core Symbolic *	Combinational logic Execute stage of CPU Reset *
Number of FIs N	1	5	2
BMC depth k	75	46	38
Verification results	φ is reachable	φ is unreachable	φ is unreachable

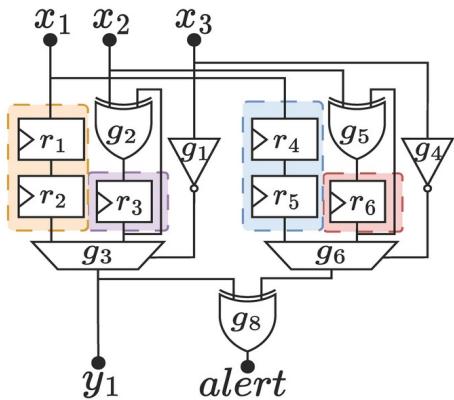
State Space: limitation of a monolithic HW/SW analysis


Factors to state space explosion

- Large HW designs, large programs (SW)
 - Focus on specific parts to be analysed
 - Simulation on other parts ...
- **Faults incur extra analysis complexity**
 - In particular, multiple faults: combinatorial explosion
 - Restrict areas to be faulted (combinational / sequential logics)
- Verification using Bounded Model Checking (BMC) -> **limited unrolling**

Use case names	<i>I - Robust Software</i>	<i>II - Robust Hardware</i>	<i>III - Cryptographic Software</i>	
Hardware design	name: CV32E40P (Riscy) - RISC-V - 4 stages	Secure Ibex - RISC-V - 2 stages - dual core	Ibex - RISC-V - 2 stages	
	gates: FFs: size*(GE):	2842 179 89954	4422 211 61452	
Software program	VerifyPIN_V7 [Dur+16]	VerifyPIN_V1 [Dur+16]	Key Schedule (AES) [kok19]	
Attacker Goal φ	Bypass authentication without triggering SW alert	Bypass authentication without triggering HW alert	Set to 0 a byte in the penultimate round key	
Fault model \mathcal{F}	location: effect: timing:	Sequential logic Control Path Symbolic 60:*	Sequential logic Redundant CPU Core Symbolic *	Combinational logic Execute stage of CPU Reset *
Number of FIs N	1	5	2	
BMC depth k	75	46	38	
Verification results	φ is reachable	φ is unreachable	φ is unreachable	

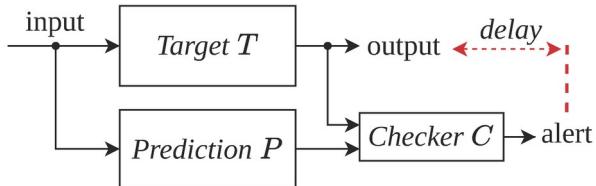

k-Fault Resistant Partitioning: one step further in scalability


k-Fault Resistant Partitioning [CHES, 2024]

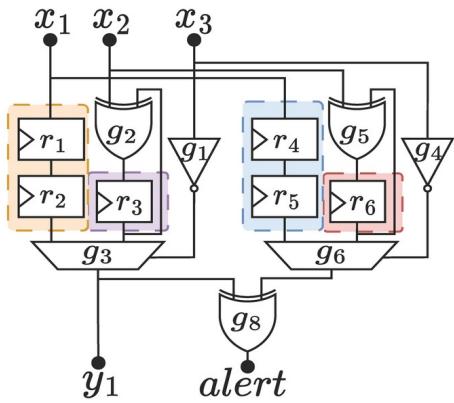
Intuition

Concurrent Error Detection Scheme

Partitioning example with $k = 1$


Theorem

k-fault resistant partitioning \Rightarrow k-fault security


k-Fault Resistant Partitioning [CHES, 2024]

Intuition

Concurrent Error Detection Scheme

Partitioning example with $k = 1$

Theorem

k -fault resistant partitioning \Rightarrow k -fault security

Validation

Research Objectives

- No CPUs analysis tools or benchmarks available for comparison
- Research Questions
 - Evaluate verification performance
 - Consider multiple-fault attacks
 - Compare with prior work like FIVER [RR21]

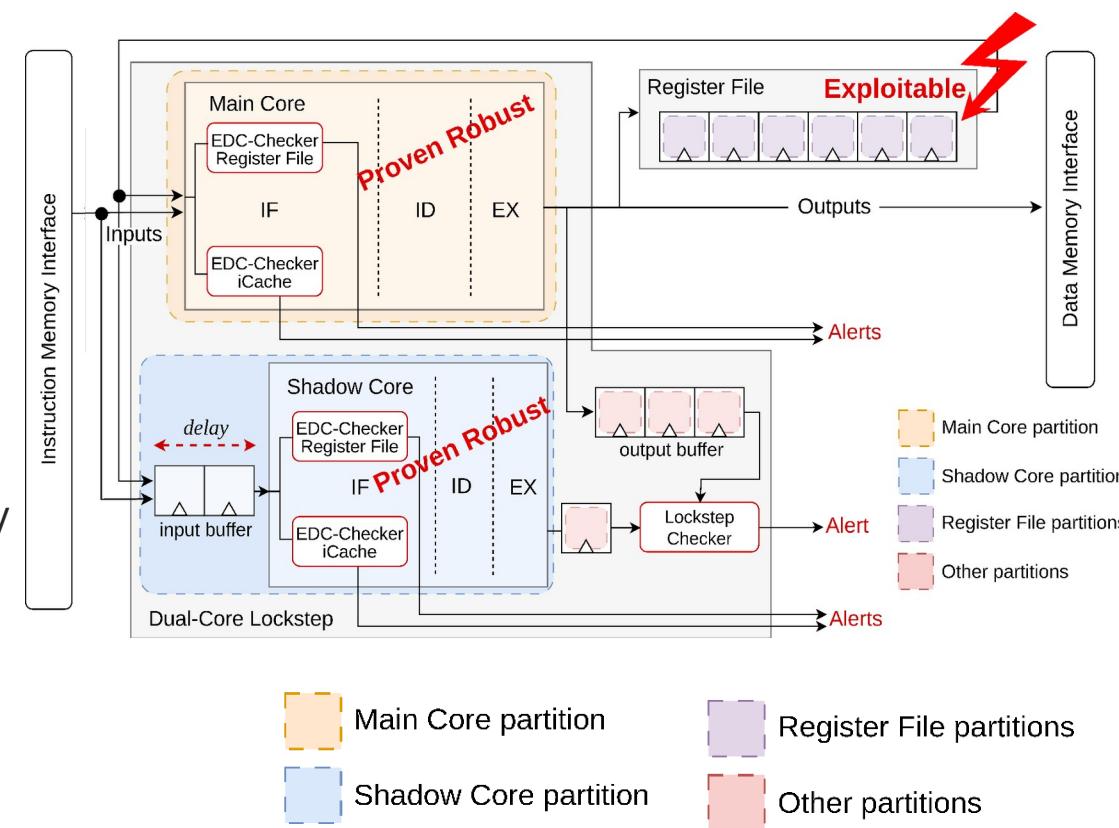
Impeccable Circuits [AM19]

- Symmetric Bloc Ciphers (AES, LED, Simon, Skinny ...) protected with Error Detection Codes (EDC)
- Designed to detect up to 3 faults (up to 7 faults for AES)

Test case	# faults	FIVER	kFRP (ours)
Skinny	2		10 sec.
Skinny	3		39 sec. (*)
AES	2	130 h	4 h
AES	3	∞	55 h (*)

(*) we identify exploitable faults in the checker of Skinny and AES

Case study: analysis of a Secure Element


OpenTitan: open-source Root of Trust [JR18]

- Developed by a consortium of leading players in digital systems and cybersecurity
 - TRL 8 according to LowRISC
- Secure-Ibex processor (development version) [Lo18]
 - Embeds several HW countermeasures: Dual Core Lockstep (DCLS), Error Detection Codes in Register File

Results of applying our pre-silicon methodologies

- Fault model:** single transient bit-flip everywhere at any time
- Vulnerability Reported:** 172 exploitable faults — allow reading from an incorrect register location
 - We proposed a security fix and formally prove it using our methodology
 - Our fix was integrated into the OpenTitan project**
- Secure Ibex** is now **proven 1-fault secure** unconditionally of the executed software
 - Prove 1-fault security (DCLS + Error detection codes) in 68 hours

k-FRP's scalability improvements

Evaluation of the Secure Ibex and its modules using k-fault-resistant partitioning

Circuit Characteristics			Faults		Algorithm 1 Performance			Results		
Name	Size (GE)	Regs (#)	Loc. (#)	Order k	BuildPartitioning		CheckIntegrity Time	Partitions (#)	Exploitable Faults	
					Iter. (#)	Time			\mathcal{P}' (#)	\mathcal{F}' (#)
Register File	12 075	1 326	8 331	1	172	38 s	53 s	1 326	0	172
			1 326 ^a	3	1	349 s	344 s	1 326	0	0
Register File with fix	11 913	1 326	8 667	1	1	17 s	73 s	1 326	0	0
			1 326 ^a	3	1	135 s	383 s	1 326	0	0
DCLS	117 998	5 918	116 561	1	508	20 h 12	5 h 10	1 108	0	0
				2	11	11 s	—	445	—	—
Secure Ibex (no iCache)	130 194	7 248	125 080	1	1	10 h 45	30 h 50	2 438	0	0 (+172)
				2	48	53 s	—	421	—	—

^a Restricted fault model targeting the sequential logic only

	kGE (#)	faults (#)	CPU cycles (#)	analysis level
μArchIFI	20-90	1 (* \leq 5)	\leq 100	RTL
kFRP	130	\leq 3	unlimited	netlist

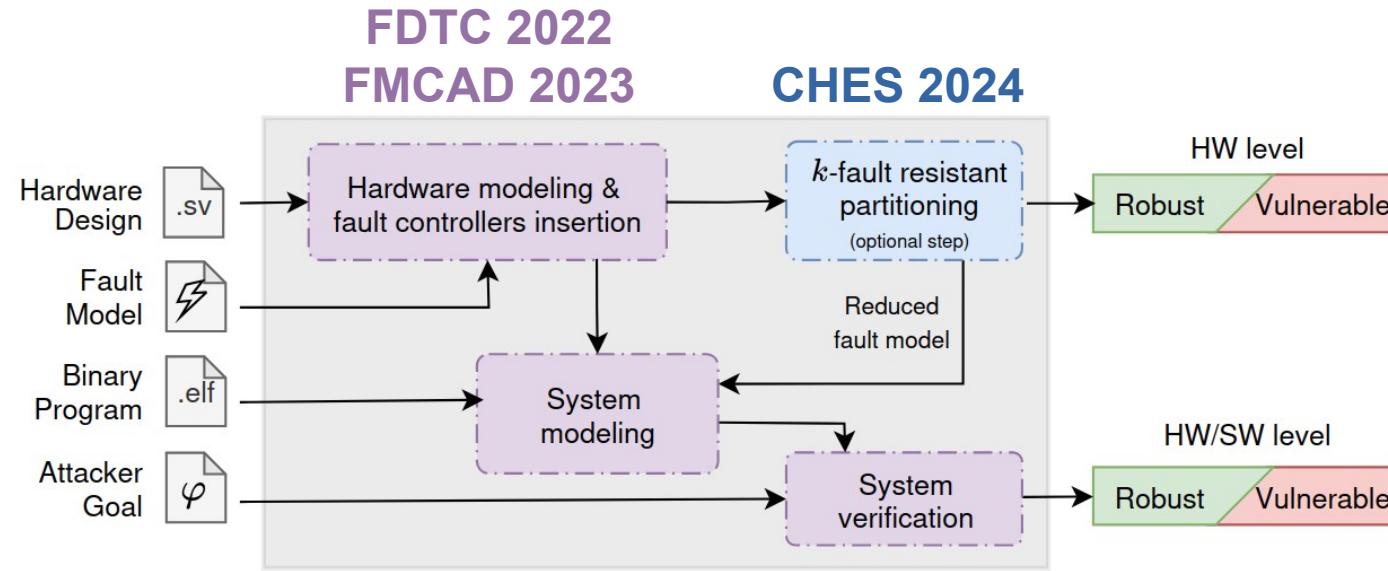
System Co-Verif. [CHES 2024]: SW Case Studies

- **Register File vulnerability is exploitable on Secure Ibex**

OpenTitan's Secure Boot - 1st stage

- Goal: **Bypass memory signature check**
- # instructions: **2 526**
- # faults: **122 048**
- Performance: **2.5 hours** (8 threads)
- Results: **Secure**

VerifyPIN [DP16]


- Goal1: **Bypass authentication**
- Goal2: **Increase max number of tries**
- # instructions: **187**
- # faults: **7 424**
- Performance: **6 mins** (1 thread)
- Results: **Insecure**

DFA on tiny AES [Ko19]

- SW implementation of AES
- Goal1: **DFA on key schedule**
- # instructions: **221**
- # faults: **5 760**
- Performance: **7 mins** (2 threads)
- Results: **Insecure**
- Goal2: **DFA on 7th AES round**
- # instructions: **1 144**
- # faults: **38 912**
- Performance: **29 mins** (8 threads)
- Results: **Insecure**

Provable system security, despite HW vulnerabilities
→ **Avoids HW respin**

µArchiFI+: pre-silicium formal methodologies for FIA robustness

Take-away messages

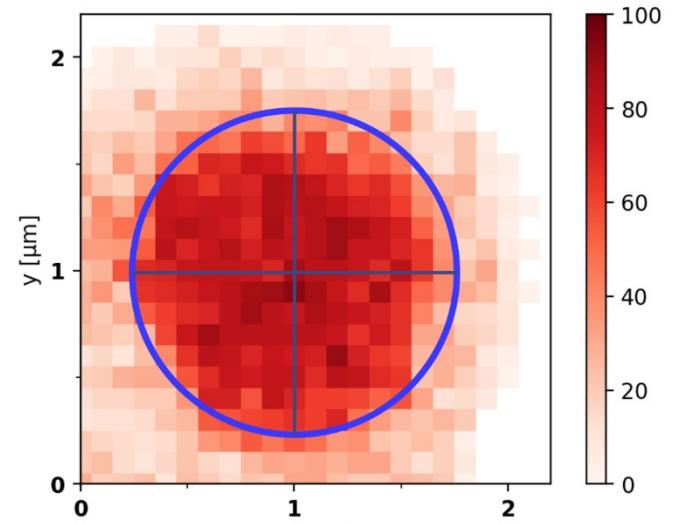
- Pre-silicon methodologies to identify vulnerabilities / prove robustness of HW/SW systems against FIA
 - Formal & exhaustive approach using a parametric fault model
 - RTL- and netlist-level analyses (leveraging HW countermeasures to speedup analyses)
 - Agnostic to EDA flows
 - Better understanding of subtle fault effects due to HW/SW coupling
 - Reduce design costs/delays (e.g. prove SW countermeasures to avoid HW respin) & increase confidence before certifications
- Supports various processors (secured with HW/SW countermeasures) + cryptographic HW accelerators
- **Found vulnerability in an industry-grade (TRL 8) secure element**

µArchifit: next steps

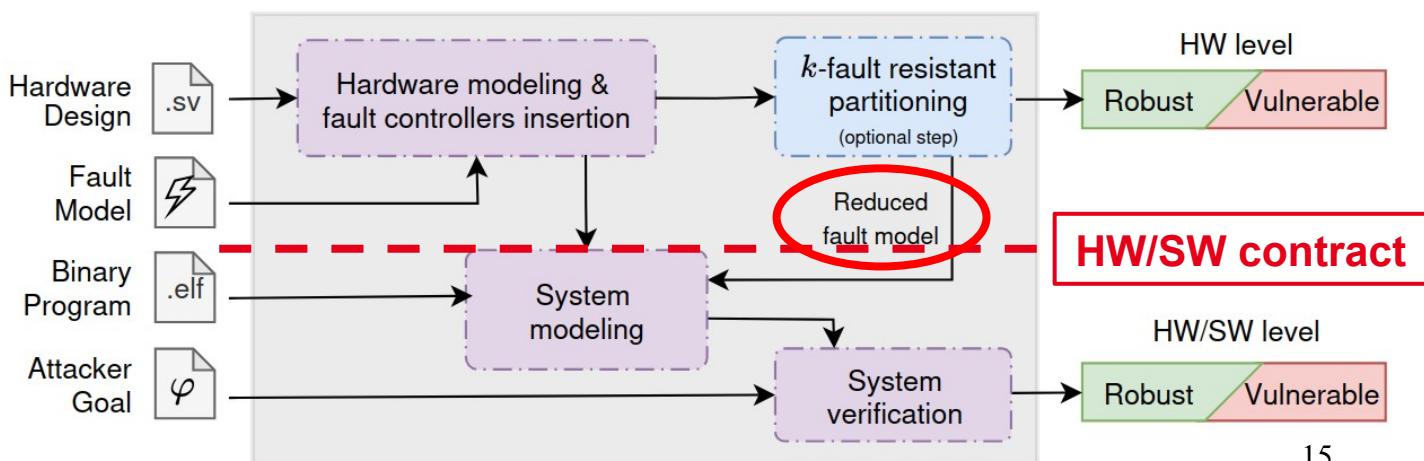
Leveraging layout information to design new fault models

- A laser spot may fault several neighbour cells:
→ Select signals according to location constraints of laser spot
- Clock glitch fault models:
→ Leverage timing information

Generation of fault characterization programs

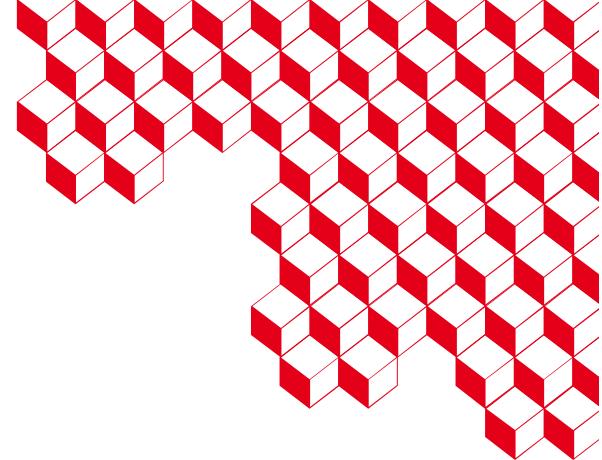

(PhD Jonah Alle Monne – 2024-2027)

- Current practice for designing characterization programs: expert knowledge & educated guesses
- Automate programs generation according to target fault location or fault effect


HW/SW fault injection contracts

(PhD Israël Kafando – 2025-2028)

- Need for a model that supports reasoning at the HW and SW levels, *separately*
→ Contracts: formal security abstraction
→ Integrate fault-models in contracts



Laser characterization, 28nm bulk
CEA Leti, L. Mangin (2025)

Thank you

Questions?

[FDTC 2022] S. Tollec, M. Asavoae, D. Couroussé, K. Heydemann, and M. Jan “Exploration of Fault Effects on Formal RISC-V Microarchitecture Models,” in FDTC, 2022.

[FMCAD 2023] S. Tollec, M. Asavoae, D. Couroussé, K. Heydemann, and M. Jan “ARCHIFI: Formal Modeling and Verification Strategies for Microarchitectural Fault Injections,” in FMCAD, 2023.

[CHES 2024] S. Tollec, V. Hadžić, P. Nasahl, M. Asavoae, R. Bloem, D. Couroussé, K. Heydemann, M. Jan, and S. Mangard “Fault-Resistant Partitioning of Secure CPUs for System Co-Verification against Faults,” IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2024.