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Reliability challenges in neural network applications

e Cosmic rays

@ oy

https://apod.nasa.gov/apod/ap060814.html

 Reliability of embedded systems

© DinosoftLabs, Flaticon

e Fault consequence...

Cosmic particles can change elections
and cause planes to fall through the sky,
scientists warn  INDEPENDENT

lan Johnston Science Correspondent in Boston * Friday 17 February 2017 16:40 GMT

*...On a neural network [1]
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(c) Unsafe Observed faults Prediction - strong
corruption of prediction result

[1] Bosio et al. (IEEE LATS, 2019). A reliability analysis of a deep neural network.
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I-Reliability challenges in neural network applications

* Resource-aware protection of WEIGHTS and ACTIVATIONS

o Selective TMR (Triple Modular Redundancy) on the most vulnerable layers [2] or channels [3]
o ECC (e.g., Hamming code) applied to most significant bits [4]

* Behavior-based hardening

o Fault masking through inherent neural network robustness [5]
o Activation clipping to limit error propagation [6]

e Evaluation strategies

o Exhaustive evaluation is impractical for large models
o Statistical Fault injection methods to efficiently estimate model vulnerability [7] [8]

[2] Libano et al. (IEEE TNS, 2018). Selective hardening for neural networks in FPGAs.

[3] Bertoa et al. (IEEE D&T, 2022). Fault-tolerant neural network accelerators with selective TMR.

[4] Traiola et al. (IEEE ETS, 2023). HarDNNing: a machine-learning-based framework for fault tolerance assessment and protection of DNNSs.

[5] Burel et al. (IEEE TDMR, 2022). Mozart+: Masking outputs with zeros for improved architectural robustness and testing of dnn accelerators.

[6] Hoang et al. (IEEE DATE, 2020). Ft-clipact: Resilience analysis of deep neural networks and improving their fault tolerance using clipped activation
[7] Leveugle et al. (IEEE DATE, 2009). Statistical fault injection: Quantified error and confidence.

[8] Ruospo et al. (IEEE DATE, 2023). Assessing convolutional neural networks reliability through statistical fault injections.
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SFI4NN: Statistical Fault Injection for Neural Networks

» AlexNet [9] sensitivity analysis

o 8-bit fixed-point model
o CIFAR-10[10], 10k test images

e Exhaustive Fault injection

0 28,505,792 WEIGHTS x 8-bit x 10k images
— 2,280,463,360,000 faults

[9] Krizhevsky et al. (NeurlIPS, 2012).
Imagenet classification with deep convolutional neural networks.

[10] Krizhevsky et al. (Univ. of Toronto, 2009).
Learning multiple layers of features from tiny images.

L (i Number | Output Number of
of data shape parameters

INPUT Input-0 3,072 [3, 32, 32] 0

Conv-1 57,600 [64, 30, 30] 1,728
CONV-1 | ReLu-2 57,600 [64, 30, 30] 0

Pool-3 14,400 [64, 15, 15] 0

Conv-4 32,448 [192, 13, 13] | 110,592
CONV-2 | ReLu-5 32,448 [192, 13, 13] | O

Pool-6 6,912 [192, 6, 6] 0

Conv-7 13,824 [384, 6, 6] 663,552
CONV-3 | ReLu-8 | 13,824 | [384,6,6] | 0

Conv-9 9,216 [256, 6, 6] 884,736
CONV-4 | ReLu-10 | 9216 | [256,6,6] | 0

Conv-11 | 9,216 [256, 6, 6] 589,824
CONV-5 | ReLu-12 | 9,216 [256, 6, 6] 0

Pool-13 2,304 [256, 3, 3] 0

Flat-14 2,304 [2 304] 0
FC-1 Lin-15 4,096 [4 096] 9,437,184

ReLu-16 | 4,096 [4 096] 0
FC.2 Lin-17 4,096 [4 096] 16,777,216

ReLu-18 | 4,096 [4 096] 0
FC-3 Lin-19 10 [10] 40,960
Total 289,994 28,505,792
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I-SFI4NN: Statistical Fault Injection For Neural Networks

Statistical Fault Injection (SFI) equation: original from [7], adapted for neural networks in [8]

N (4, 1)
N(i,l)—1
t2-p(i)-(1—p(7))

TL(Z,Z) — |+ 2

* N = exhaustive set of possible fault locations e Sample size depending on:
* n = subset of Fault to inject (randomly) o Tolerated error margin e
o Bit position i o Confidence level £
o Layer ( o Probability p, related to the bit position

[7] Leveugle et al. (IEEE DATE, 2009). Statistical fault injection: Quantified error and confidence.
[8] Ruospo et al. (IEEE DATE, 2023). Assessing convolutional neural networks reliability through statistical fault injections.
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SFI4NN: Statistical Fault Injection for Neural Networks

. . Laver tvpe Number | Output Number of
« AlexNet sensitivity analysis e of data | shape parameters
INPUT | Input-0 | 3,072 3, 32, 32] 0
o 8-bit fixed-point model Conv-1 [ 57,600 [ [64,30,30] | 1,728
o CIFAR-10, 10k test images CONV-L | Reluz ) 100 {gj’ o fg} X
Conv-4 | 32,448 | [192, 13, 13] | 110,592
CONV-2 | ReLu-5 | 32,448 | [192,13,13] | O
« Exhaustive Fault injection o B E
: : CONV-3 | Reru-8 | 13824 | 384.6.6] |0
0 28,505,792 WEIGHTS x 8-bit x 10k images = ’ >
CONVa | Comv-9 [ 9216 [256, 6, 6] 884,736
— 2,280,463,360,000 Faults ReLu-10 | 9,216 [256, 6, 6] 0
Conv-11 | 9,216 [256, 6, 6] 589,824
CONV-5 | ReLu-12 | 9,216 [256, 6, 6] 0
SFI Pool-13 | 2,304 [256, 3, 3] 0
Flat-14 | 2,304 [2 304] 0
o L FC-1 Lin-15 | 4,096 [4 096] 9,437,184
e Statistical fault injection ReLu-16 | 4,096 [4 096] 0
' . Feo Lin-17 | 4,096 [4 096] 16,777,216
o 10% error margin, 90% confidence level ReLu-18 | 4,096 [4 096] 0
— 14,690,000 Faults FC-3 Lin-19 | 10 [10] 40,960
Total 289,994 28,505,792
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SFI4NN: Statistical Fault Injection for Neural Networks

Bitflip Binary Decimal Fault directionality
%) 0011.10 3.5 Original value '«
1-0 | 0001.10 1.5 Closer to zero |
0-1|0111.10 7.5 Away from zero .|
0-1]1011.10 -4.5 Away from zero (Sign bit) -]
 0-to-1 Flip
o Positive value - Away from zero
o Negative value — Closer to zero
* 1-to-0 Flip
o Positive value = Closer to zero
o Negative value -» Away from zero
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SFI4NN: Statistical Fault Injection For Neural Networks

User

e =0.01
t=0.99

» Defines
» Margin of error
» Confidence level

» Designs
* NN model
* Quantization
* Pruning rate

Statistical Fault
Injection

» Creates

* Fault subset

* Random positions
(layer, bit)

Quantized and/or
Pruned NN

(Brevitas

€ ONNX

Bitflip direction

0->1
1=>0

NN Sensitivity
Analysis

n(i,l
(i ), Faulty model
inference
—>
ONNX
> @ RUNTIME
Fault-free model
inference
—
ONNX
B @O RUNTIME
Dataset
L)

=

« Targets weights and intermediate data

» Provides layer and bit-level granularity

 Supports fixed-point arithmetic

Comparison
of predictions

VLl

Faulty

-

Reference

Weights

DDDDD

Intermediate data

Bit positions

« Uses random fault sampling

« Enables CNN sensitivity analysis

* Handles fault direction (0 » 1vs. 1 = 0)
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Errors / Faults (%)

r

SFI4NN: Statistical Fault Injection For Neural Networks

Weights (layers)

Activations (layers)

1.2% 1 Away-from-zero errors (96.12%) _ 1 Away-from-zero errors (88.68%)
. I Closer-to-zero errors 0.5% [ Closer-to-zero errors
1.0%- _ -
o
S 0.4%
9]
0.8%1 5 -
® 0.3% L
= — [ =
0.6% 2
° ©0.2%
o ]
0.4% 0.1% ﬂ ’:_ —
0.2% 0.0% Qjﬁ - ﬂﬁ PR, ﬂﬁ’j‘\ﬁ
< A’/\"’\/’I")Ay\;p\(ps \)?o@',\?';/',i/\/';/b',\?";",\('o'ﬁ ',:'b
QS IL. SILSTSFSISFS IS
0 : : : : : . : . SO OO0 U, 90,09 N Y @
0.0% ™ oiv1 Comv2 Comv3 Conva Comvs FC1  FC2  FC3 SR TOLLITC Y EF VS

* AlexNet sensitivity analysis using SFI4NN
o 10% error margin
° 90% confidence level

o 8-bit fixed-point model
o CIFAR-10, 10k test images

Bits position

2.0%-

—~ 1.5%

1.0%+

Errors / Faults (%

0.5%1

1 Away-from-zero errors (94.60%)

0.0%

I Closer-to-zero errors

—

Bit 7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Most NN mispredictions are caused by
away-from-zero errors

Nov. 19, 2025
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VANDOR: Voter block with AND/OR gates [11]

 Closer-to-zero faults
o Have a lower impact on neural network predictions

o Selecting the value closer to zero can reduce fault effects

e Duplication
o Detects faults when duplicated data differ

o Correction is not possible (no majority voting as in TMR)

* VANDOR concept
o Duplicates data and selects the value closer to zero upon fault detection

o Enables lightweight, bit-level fault mitigation

[11] Guillemé et al. (IEEE IOLTS, 2024). VANDOR: Mitigating SEUs into Quantized Neural Networks.

Nov. 19, 2025
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VANDOR: Voter block with AND/OR gates [11]

Sign bit e

[ ] ‘

Sensitive bit

VANDOR

—eo Output

Clock

L[

« Triplicated sign bit enables valid correction

* One additional D Flip-Flop

« Mismatch between sensitive and duplicated bits — fault detection
« Acts as an AND gate for positives (sign bit = 0), and as anOR gate for negatives (sign bit = 1)

Nov. 19, 2025
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I-T3V3U2 implementation for an 8-bit data word

Parameter From external memory
Activation or previous layer
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit0

- D Q ! D Q - D Q TMR VANDOR UNPROTECTED

L Bit; [ 1] - , Bitg , Bits

D Q D Q D Q D Q D Q D Q

| Bity "Dé)‘} Bitg || I Bits || b Bita []lg t] b Bits [/ t] b Bit2 (|l gj

|D Q_'D D Q D Q |D QJ_ |D QJ_ D QJ_ D Q|D Q
>Blt7

Bit 3 Bit 2 Bit 1 Bit 0

Bit 4

To local neuron
or next layer

Bit 7 Bit 6 Bit 5

« Triplication on the most significant bits
« VANDOR on intermediate bits

« Least significant bits left Unprotected
 Each layer can have a different level of TVU protection
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I-Cost of TVU strategies in DFFs per 8-bit data word

L?’\f{, ':::’;f:;‘;“ TMR VANDOR UNPROTECTED DF';S";;:‘:"“"
T0-V0-U8 Bit7 | Bit6| Bit5| |Bit4 | |Bit3| Bit2 | | Bit1 Bit 0 +0 DFF
T1-V7-U0 Bit7 | Bit6| Bit5 Bit4 |Bit3| Bit2 | Bit1 Bit 0 +9 DFF
T3-V3-U2 Bit7 | Bit6| Bit5| Bit4 |Bit3 | Bit2| |Bit1 Bit 0 +9 DFF
T8-V0-U0 Bit 7 Bit 6 Bit5 | Bit4 Bit3 | | Bit2 Bit 1 Bit O +16 DFF

« 37 TVU strategies for an 8-bit data word
« T1V7UO and T3V3U2 — same DFF overhead, different protection efficiency

« Embedded systems have limited hardware — full triplication not feasible
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Pareto-optimal TVU strategies for an AlexNet use case

100 A

—— Pareto Front - Data TVU Strategies
—— Pareto Front - Parameters TVU Strategies

 Total possible configurations .
o 37 configurations per layer
o 8 parameter layers - 378

60 -

o 19 activation layers - 37"

40 -

Resilience Improvement (%) - NN,

e Pareto-optimal configurations
o Weight layers: 114,120 201
o Activation layers: 4,007

0 25 50 75 100 125 150 175 200
Hardware Overhead (%) - NNpo
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Pareto-optimal TVU strategies for an AlexNet use case

Weight TVU strategies for selected NNy, targets

NNygo (%) NNgr1 (%) CONV-1 CONV-2 CONV-3 CONV-4 CONV-5 FC-1 FC-2 FC-3
20 15.22 T8VOUO T1V4U3 T1V5U2 TOVOUR T1V2U5 T1V2U5 TOVOUS T1V2U5
50 40.70 Ti1VeU1 T1V2US5 T1V5U2 T1V4U3 T1V3U4 TOVOUS T1V4U3 TOVOUS
100 84.08 TOVOUS T1V1UG6 T1V5U2 T1IV7UO T1V7UO TiVeU1 T1IV6eU1 T1iVou7
147.85 94.04 T8VOUO T8VOUO T8VOUO T7V1UO T7V1iUO0 T8VOUO T1V7TUO T8VOUO
170.39 97.47 T8VOUO T8VOUO T8VOUO T7V1UO T7V1UO T1V7UO T8VOUO T8VOUO

Weight TVU strategies for selected NNg targets

NNpxo (%) NNgr1 (%) CONV-1 CONV-2 CONV-3 CONV-4 CONV-5 FC-1 FC-2 FC-3
14.49 10 T1V3U4 TOVOUS T1V5U2 TOVOUS TOVOUS T1V1UG6 TOVOUS Ti1VOouT7
29.89 25 TOVOUS T1V1UG6 TOVOUS TOVOUS TIV1UG Ti1V5U2 TOVOUS TOVOUS
59.95 50 T1V3U4 TOVOUS TOVOUS TOVOUS8 T1V2US TOVOoUS8 TIVeU1 T1V1UG6
89.66 75 T5V2U1 T1V3U4 TOVOUS TOVOUS T1V4U3 T1V5U2 T1VeU1 T1VOoU7
111.66 90 T3V4U1l T1V5HU2 T1V5U2 T1V7UO TIV7UO T1IV7UO T1V7UO TOVOUS
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I-CONCLUSION

SFI4NN framework

 Provides a statistical fault injection approach for fixed-point quantized neural networks
« Quantifies and analyzes the impact of bit-flip directionality

« Operates at layer- and bit-level granularity

« Targets both parameters and activations

TVU protection
« Selective protection strategies that account for neural network behavior
 Fine-grained protection down to individual flip-flops

« Improves reliability with minimal hardware cost
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Thanks for your attention.
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