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Reliability challenges in neural network applications

https://apod.nasa.gov/apod/ap060814.html

• …On a neural network [1]

© DinosoftLabs, Flaticon

• Fault consequence…• Cosmic rays

• Reliability of embedded systems

[1] Bosio et al. (IEEE LATS, 2019). A reliability analysis of a deep neural network.
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Reliability challenges in neural network applications

• Resource-aware protection of WEIGHTS and ACTIVATIONS

      ◦ Selective TMR (Triple Modular Redundancy) on the most vulnerable layers [2] or channels [3]
      ECC (e.g., Hamming code) applied to most significant bits◦  [4]

• Behavior-based hardening

      ◦ Fault masking through inherent neural network robustness [5]
      Activation clipping to limit error propagation◦  [6]

• Evaluation strategies

      ◦ Exhaustive evaluation is impractical for large models
      Statistical fault injection methods to efficiently estimate model vulnerability ◦ [7] [8]

[2] Libano et al. (IEEE TNS, 2018). Selective hardening for neural networks in FPGAs.
[3] Bertoa et al. (IEEE D&T, 2022). Fault-tolerant neural network accelerators with selective TMR.
[4] Traiola et al. (IEEE ETS, 2023). HarDNNing: a machine-learning-based framework for fault tolerance assessment and protection of DNNs.
[5] Burel et al. (IEEE TDMR, 2022). Mozart+: Masking outputs with zeros for improved architectural robustness and testing of dnn accelerators.
[6] Hoang et al. (IEEE DATE, 2020). Ft-clipact: Resilience analysis of deep neural networks and improving their fault tolerance using clipped activation
[7] Leveugle et al. (IEEE DATE, 2009). Statistical fault injection: Quantified error and confidence.
[8] Ruospo et al. (IEEE DATE, 2023). Assessing convolutional neural networks reliability through statistical fault injections.
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SFI4NN: Statistical Fault Injection for Neural Networks

• AlexNet [9] sensitivity analysis

      ◦ 8-bit fixed-point model
      CIFAR-10 ◦ [10], 10k test images

• Exhaustive fault injection

       ◦ 28,505,792 WEIGHTS × 8-bit × 10k images
 → 2,280,463,360,000 faults

• Statistical fault injection

      ◦ 10% error margin, 90% confidence level
 → 14,690,000 faults

[9] Krizhevsky et al. (NeurIPS, 2012).
Imagenet classification with deep convolutional neural networks.

[10] Krizhevsky et al. (Univ. of Toronto, 2009).
Learning multiple layers of features from tiny images.
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SFI4NN: Statistical Fault Injection for Neural Networks

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA

• N  exhaustive set of possible fault locations→

• n  subset of fault to inject (randomly)→

      ◦ Bit position i 

      ◦ Layer l

• Sample size depending on:

      ◦ Tolerated error margin e

      ◦ Confidence level t

      ◦ Probability p, related to the bit position

[7] Leveugle et al. (IEEE DATE, 2009). Statistical fault injection: Quantified error and confidence.
[8] Ruospo et al. (IEEE DATE, 2023). Assessing convolutional neural networks reliability through statistical fault injections.

Statistical Fault Injection (SFI) equation: original from [7], adapted for neural networks in [8]
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SFI

SFI4NN: Statistical Fault Injection for Neural Networks

• AlexNet sensitivity analysis

      ◦ 8-bit fixed-point model
      CIFAR-10, 10k test images◦

• Exhaustive fault injection

       ◦ 28,505,792 WEIGHTS × 8-bit × 10k images
 → 2,280,463,360,000 faults

• Statistical fault injection

      ◦ 10% error margin, 90% confidence level
 → 14,690,000 faults

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA
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SFI4NN: Statistical Fault Injection for Neural Networks

• 0-to-1 flip

      ◦ Positive value   Away from zero→

      ◦ Negative value  Closer to zero→

• 1-to-0 flip 

      ◦ Positive value  Closer to zero→

      ◦ Negative value  Away from zero→

Bitflip Binary Decimal Fault directionality
∅ 0 0 1 1 . 1 0 3.5 Original value ☑️

1  0→ 0 0 0 1 . 1 0 1.5 Closer to zero ↘️
0  1→ 0 1 1 1 . 1 0 7.5 Away from zero ↗️
0  1→ 1 0 1 1 . 1 0 -4.5 Away from zero (Sign bit) ↗️

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA
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• Targets weights and intermediate data • Uses random fault sampling

• Provides layer and bit-level granularity • Handles fault direction (0  1 vs. 1  0)→ →

• Supports fixed-point arithmetic • Enables CNN sensitivity analysis

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA

SFI4NN: Statistical Fault Injection for Neural Networks
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SFI4NN: Statistical Fault Injection for Neural Networks

• AlexNet sensitivity analysis using SFI4NN
      ◦ 10% error margin       8-bit fixed-point model◦
      90% confidence level◦       CIFAR-10, 10k test images◦

Weights (layers)
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Most NN mispredictions are caused by
away-from-zero errors
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VANDOR: Voter block with AND/OR gates [11]

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA

• Closer-to-zero faults

      ◦ Have a lower impact on neural network predictions

      ◦ Selecting the value closer to zero can reduce fault effects

• Duplication

      ◦ Detects faults when duplicated data differ

      ◦ Correction is not possible (no majority voting as in TMR)

• VANDOR concept

      ◦ Duplicates data and selects the value closer to zero upon fault detection

      ◦ Enables lightweight, bit-level fault mitigation

[11] Guillemé et al. (IEEE IOLTS, 2024). VANDOR: Mitigating SEUs into Quantized Neural Networks.
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VANDOR: Voter block with AND/OR gates [11]

• Triplicated sign bit enables valid correction

• One additional D Flip-Flop

• Mismatch between sensitive and duplicated bits  fault detection    →

• Acts as an AND gate for positives (sign bit = 0), and as anOR gate for negatives (sign bit = 1)  

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA
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T3V3U2 implementation for an 8-bit data word

• Triplication on the most significant bits

• VANDOR on intermediate bits

• Least significant bits left Unprotected

• Each layer can have a different level of TVU protection

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA
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Cost of TVU strategies in DFFs per 8-bit data word

• 37 TVU strategies for an 8-bit data word

• T1V7U0 and T3V3U2  same DFF overhead, different protection efficiency→

• Embedded systems have limited hardware  full triplication not feasible→

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA
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Pareto-optimal TVU strategies for an AlexNet use case

• Total possible configurations

      ◦ 37 configurations per layer

      ◦ 8 parameter layers  37→ 8

      ◦ 19 activation layers  37→ 19

• Pareto-optimal configurations

      ◦ Weight layers: 114,120

      ◦ Activation layers: 4,007

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA
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Pareto-optimal TVU strategies for an AlexNet use case

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA

Weight TVU strategies for selected NNRI targets

Weight TVU strategies for selected NNHO targets
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CONCLUSION

Hybrid Fault Mitigation for Neural Networks based on Directional and Positional Bit Sensitivity – BITFLIP by DGA

SFI4NN framework

• Provides a statistical fault injection approach for fixed-point quantized neural networks

• Quantifies and analyzes the impact of bit-flip directionality

• Operates at layer- and bit-level granularity

• Targets both parameters and activations

TVU protection

• Selective protection strategies that account for neural network behavior

• Fine-grained protection down to individual flip-flops

• Improves reliability with minimal hardware cost



Nov. 19, 2025 17

  Thanks for your attention.
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