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The BKZ Algorithm

Idea: consider 𝛽 basis vectors at a time.

For each block:
1 project vectors orthogonally

to those before the block

2 find shortest vector

3 lift back to the lattice

4 remove linear dependencies

Uses Gram-Schmidt
linear orthogonal projections
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The BKZ Algorithm

Cost: exponential in the blocksize 𝛽

Efficiency: better when flat orthogonalized basis profile

Example from [dBvW25]
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Module Lattices

Number field 𝐾 = ℚ[𝑋]/𝑃(𝑋), where 𝑃 ∈ ℚ[𝑋] irreducible, of degree 𝑑.

𝒪𝐾 its ring of integers. 𝐾ℝ = 𝐾 ⊗ℚ ℝ

𝐼 fractional ideal of 𝒪𝐾: 𝒪𝐾-submodule of 𝐾 s. t. ∃𝑥 ∈ 𝐾∗ | 𝑥𝐼 ⊂ 𝒪𝐾.

Module lattice 𝑀: defined with b1,… ,b𝑟 ∈ 𝐾𝜌
ℝ and 𝐼1,… , 𝐼𝑟 fractional ideals of 𝐾,

as 𝑀 = 𝐼1b1 +…+ 𝐼𝑟b𝑟.

One may obtain a lattice in ℝ𝑑𝜌 from 𝑀, by embedding elements of 𝐾ℝ into ℝ𝑑.

Ex.: canonical embedding, coefficient embedding.
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mBKZ: BKZ Generalized to Modules
(stemming from [LPSW19]’s mLLL)

Algorithm 1: mBKZ Algorithm Overview,
with an SVP oracle in dimension 𝛽𝐾
Input: pseudobasis ℬ = (𝐼𝑘,b𝑘)𝑘 of 𝑀 ⊂ 𝐾𝑟

ℝ, blocksize 𝛽𝐾

1 while this step changes ℬ do
2 for 𝑖 in J1; 𝑟K do
3 𝑗 ← min(𝑖 + 𝛽𝐾 − 1, 𝑟)
4 v ← SVP (𝜋𝑖 (ℬJ𝑖;𝑗K))
5 Let 𝐼 be such that v𝐼 = v𝐾 ∩Module(𝜋𝑖(ℬJ𝑖;𝑗K))
6 Let w be such that w𝐼 ⊂ 𝑀 and 𝜋𝑖(w) = v
7 Insert (w, 𝐼) into ℬ at position 𝑖
8 Remove linear dependencies

9 return ℬ
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How does mBKZ perform with respect to BKZ?

Can we do better than embedding 𝑀 in ℝ𝑟𝑑 and applying BKZ?

Context of Post-Quantum Standardizations
→ important to know whether the structure can be exploited



How does mBKZ perform with respect to BKZ?

Can we do better than embedding 𝑀 in ℝ𝑟𝑑 and applying BKZ?

Context of Post-Quantum Standardizations
→ important to know whether the structure can be exploited



How does mBKZ perform with respect to BKZ?

Can we do better than embedding 𝑀 in ℝ𝑟𝑑 and applying BKZ?

Context of Post-Quantum Standardizations
→ important to know whether the structure can be exploited



State-of-the-Art

[LPSW19, MS20]: defined module-lattice versions of lattice reduction,
and studied their worst-case behavior only

[KK24]: first experimental study of module-LLL on NTRU lattices,
results limited to LLL, power-of-two cyclotomics, and no predictive framework

Our contributions:
predictions for the average case, asymptotics, experiments.
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Overview of the Presentation

I. Introduction
II. Method: Generalizing Usual Heuristics to Module Lattices

A. The Geometric Series Assumption (GSA)
B. The Gaussian Heuristic

III. Our Analysis
A. Expressing the mBKZ slope
B. Analysis of the Terms in the mBKZ Slope
C. Analysis of Dimension Gains

IV. Conclusion
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A. The Geometric Series Assumption (GSA)

1. IN THE UNSTRUCTURED CASE (introduced in [Sch03])

For (b1,… ,b𝑛) ∈ (ℝ𝑛)𝑛 a lattice basis, ordered with vectors of descending norm,
we denote (b∗

1,… ,b∗
𝑛) its Gram-Schmidt orthogonalisation, obtained recursively by setting:

b∗
1 = b1 and, for each 𝑖 ∈ J2; 𝑛K: b∗

𝑖 = 𝜋𝑖(b𝑖),

where 𝜋∗
𝑖 ∶ ℝ𝑛 → ℝ𝑛 is the linear operation projecting vectors orthogonally to spanℝ{b∗

1,… ,b∗
𝑖−1}.

GSA Heuristic

Using an algorithm 𝒜 to reduce a basis,
there is an 𝛼𝒜 ∈ [0; 1] such that:

∀𝑖 ∈ J1; 𝑛 − 1K , ∣∣b∗
𝑖+1∣∣ ≈ 𝛼𝒜 ||b∗

𝑖 ||
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A. The Geometric Series Assumption (GSA)

2. FOR MODULE BKZ

Norm and Determinant Notions:

Let 𝜎 ∶ 𝐾 → ℂ𝑑, 𝑥 ↦ (𝜎1(𝑥),… ,𝜎𝑑(𝑥)) denote the canonical embedding from 𝐾 to ℂ.

Algebraic norm on 𝐾ℝ 𝒩 ∶ 𝐾ℝ → ℝ,𝑥 ↦ ∏𝑖 𝜎𝑖(𝑥),
algebraic norm of a fractional ideal 𝐼 of 𝒪𝐾: 𝒩(𝐼) = |𝒪𝐾/𝑥𝐼|

𝒩(𝑥) for any 𝑥 ∈ 𝐾∗ | 𝑥𝐼 ⊂ 𝒪𝐾.

⟨⋅, ⋅⟩ ∶ 𝐾2
ℝ → ℂ, (𝑥, 𝑦) ↦ ∑𝑖 𝜎𝑖(𝑥)𝜎𝑖(𝑦) defines the trace norm ||⋅|| ∶ 𝐾ℝ → ℝ,𝑥 ↦ √⟨𝑥,𝑥⟩,

extended to 𝐾𝑟
ℝ in the natural way (for Gram-Schmidt orthogonalisation).

Given (b𝑘, 𝐼𝑘) a pseudobasis of 𝑀, 𝐵 = (b𝑘)𝑘, we define:

det(𝑀) = √|Δ𝐾|
𝑟√𝒩(det(𝐵𝑇𝐵))∏𝑘 𝒩(𝐼𝑘).
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A. The Geometric Series Assumption (GSA)
2. FOR MODULE BKZ

We Adapt the GSA Heuristic

For (b𝑘, 𝐼𝑘)𝑘 a pseudobasis of 𝑀 ⊂ 𝐾𝑟
ℝ and (b∗

𝑘)𝑘 its Gram-Schmidt projection:

∀𝑘 ∈ J1; 𝑟 − 1K ,det(b∗
𝑘𝐼𝑘) ≈ 𝛼det(b∗

𝑘−1𝐼𝑘−1).
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B. The Gaussian Heuristic

1. IN THE UNSTRUCTURED CASE

An example:

Here,
ℬ is the unit ball
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31 points inside ℬ, and Volℬ
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≈ 32.

And approximation of shortest vector
length as radius of ball with two points:

𝜆1 ≈ (2VolΛ
Volℬ

)
1
𝑑

,

where 𝑑 is the dimension.

Here: 𝜆1 = 0.27 ≈ 0.25.

Here,
ℬ is the unit ball
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B. The Gaussian Heuristic

2. A GAUSSIAN HEURISTIC FOR MODULES (FROM [GSVV24])

The number field 𝐾 of degree 𝑑’s geometry yields new factor in 𝜆1 approximation
for a module lattice 𝑀 ⊂ 𝐾𝑟

ℝ.

Indeed, given a vector, other vectors of the same Euclidean norm will be provided
by multiplication with roots of unity in 𝐾.
Hence the ball of radius 𝜆1 will hold 𝑖 ⋅ 𝜇𝐾

2 +1 points, for an integer 𝑖 in ℕ∗ and 𝜇𝐾
the number of roots of unity in 𝐾. In our heuristics, we will consider that it will
contain 𝜇𝐾

2 + 1 points.
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Expressing the Module-BKZ (mBKZ) Slope 𝛼𝐾

We Adapt the GSA Heuristic

We consider a distribution of random module lattices 𝑀 of fixed determinant 𝐷
such that, denoting (b𝑘, 𝐼𝑘)𝑘 a pseudobasis of 𝑀 ⊂ 𝐾𝛽𝐾

ℝ , and (b∗
𝑘)𝑘 its Gram-

Schmidt orthogonalisation, generating the lattice 𝑀∗:

∀𝑘 ∈ J1; 𝛽𝐾 − 1K , 𝔼𝑀{ln(det(b∗
𝑘𝐼𝑘))} = ln (𝛼𝐾) + 𝔼𝑀{ln det(b∗

𝑘−1𝐼𝑘−1)}.

Which yields, as det(b∗
1𝐼1 +⋯+ b∗

𝛽𝐾
𝐼𝛽𝐾

) = det(𝑀) = 𝐷:

𝛽𝐾(𝛽𝐾 − 1)
2

ln (𝛼𝐾) = 𝛽𝐾𝔼𝑀{ln det (s𝐼)} − ln𝐷,

where s is a shortest vector of Module(𝑀∗) and 𝐼 such that s𝐼 = s𝐾 ∩𝑀∗

Expressing 𝔼𝑀{ln det (s𝐼)} provides the terms composing 𝛼𝐾.
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Expressing the Module-BKZ (mBKZ) Slope 𝛼𝐾

We have 𝛽𝐾−1
2 ln (𝛼𝐾) = 𝔼𝑀{ln det (s𝐼)} − ln𝐷

𝛽𝐾
, where:

𝔼𝑀{ln det (s𝐼)} = 1
2
|Δ𝐾| + 1

2
𝔼𝑀 {ln𝒩(s𝑇s)} + 𝔼𝑀 {ln𝒩(𝐼)} .

So:

ln𝛼𝐾
𝑑

= 2
𝛽𝐾 − 1

(𝑡1 + 𝑡2 + 𝑡3 + 𝑡4)

where:

𝑡1 = 𝔼𝑀 {ln ||s||

𝐷
1

𝑑𝛽𝐾

}
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} 𝑡2 = 1
2𝑑

ln |Δ𝐾|
𝑑𝑑
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𝐷
1

𝑑𝛽𝐾

} 𝑡2 = 1
2𝑑

ln |Δ𝐾|
𝑑𝑑

𝑡3 = 𝔼𝑀

⎧{
⎨{⎩
ln

√
𝑑𝒩(s𝑇s)

1
2𝑑

||s||

⎫}
⎬}⎭
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⎨{⎩
ln

√
𝑑𝒩(s𝑇s)

1
2𝑑

||s||

⎫}
⎬}⎭

𝑡4 = 𝔼𝑀 {ln𝒩(𝐼)}
𝑑
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The Gaussian Heuristic Term 𝑡1 = 𝔼𝑀 {ln ||s||

𝐷
1

𝑑𝛽𝐾
}

The generalized Gaussian
Heuristic for modules pro-
vides an estimation of 𝑡1.

For 𝐾 a field with 𝜇𝐾

roots of unity, denoting
𝛽 ∶= 𝑑𝛽𝐾:
𝑡1 ≈ 1

𝛽 ln( 𝜇𝐾
2Vol(ℬ𝛽)

)

= ln(𝛽+2)
2 − ln(2𝜋𝑒)

2 + ln𝛽
2𝛽 + 𝑜( ln𝛽

𝛽 )
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The Discriminant Term 𝑡2 = 1
2𝑑 ln

|Δ𝐾|
𝑑𝑑

Constant in 𝛽𝐾.

We calculate this term for cyclotomic
fields 𝐾 = ℚ(𝜔𝑐).

Then: 𝑡2 = 1
2 ∑ 𝑝|𝑐

𝑝 prime in ℕ
(𝑝−2
𝑝−1 ln(𝑝) − ln(𝑝 − 1)) .
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The Skewness Term 𝑡3 = 𝔼𝑀{ ln
√
𝑑𝒩(s𝑇s)

1
2𝑑

||s|| }

Using the canonical em-
bedding, the arithmetico-
geometric inequality gives
𝑡3 ≤ 0.

Then, modelling the shortest
vector as uniform of a sphere
yields, denoting 𝜓 the digamma
function, (𝑑ℝ, 𝑑ℂ) the signature
of 𝐾, and 𝛽 = 𝑑𝛽𝐾:

𝑡3 ≈ 1
2 (

𝑑ℝ𝜓( 𝛽𝐾
2 )+2𝑑ℂ(𝜓(𝛽𝐾)−ln2)

𝑑 + ln 𝑑 − 𝜓(𝛽𝐾𝑑
2 ))

= 1−𝑑ℝ−𝑑ℂ
2𝛽 + 𝑜( 1

𝛽)
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The Index Term 𝑡4 =
𝔼𝑀{ln𝒩(𝐼)}

𝑑

The pseudobases are normalized
to have 𝒪𝐾 ⊂ 𝐼,
so: 𝑡4 ≤ 0.

Modelling the probability that
𝐼−1 is a multiple of an ideal 𝔞 ⊂
𝒪𝐾 as 1

𝒩(𝔞)𝛽𝐾
,

and denoting 𝜁′
𝐾

𝜁𝐾
the logarith-

mic derivative of the zeta func-
tion of 𝐾:

𝑡4 ⪆ 1
𝑑

𝜁′
𝐾(𝛽𝐾)

𝜁𝐾(𝛽𝐾) ≥ − 1
2𝛽𝐾−1 + 𝑜( 1

2𝛽𝐾
)
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Comparing mBKZ and BKZ’s Performances

We implemented mBKZ and compare experimental slopes with our analysis bounding the (𝑡𝑖)𝑖
terms. Implementation built on top of pfLLL and g6k.
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Comparing mBKZ and BKZ’s Performances

Denoting 𝛼 the slope and 𝛽 the block dimension in the unstructured case, ln𝛼𝐾
𝑑 = 𝛼, yields,

denoting 𝛽eq = 𝑑𝛽𝐾:

𝛽eq = 𝛽 + log(|Δ𝐾|
𝑑𝑑 ) 𝛽

𝑑 ln 𝛽
2𝜋𝑒

+ 𝑑 − 1 + 𝑜(1)
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Next Open Questions

1. HKZ profile, tails and dimensions for free
2. Simulation
3. Lattice sieving using cyclotomic symmetries
4. Coefficient embeddings
5. Algebraic-Norm SVP Oracle

Perthuis-Trenkić-2025:
Refined Modelling of the
Primal Attack, and Variants
Against Module-Learning
With Errors,
ePrint 2025/2195
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Conclusion

Full version: https://eprint.iacr.org/2025/1904

Thank you for your attention!
Do you have questions?
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