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The BKZ Algorithm
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The BKZ Algorithm

Idea: consider 3 basis vectors at a time.
For each block:

1 project vectors orthogonally
to those before the block

2 find shortest vector
3 lift back to the lattice b,

. . b
4 remove linear dependencies 3

Uses Gram-Schmidt

linear orthogonal projections
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The BKZ Algorithm

Cost: exponential in the blocksize £

Efficiency: better when flat orthogonalized basis profile

s — LLL
LLL GSA

_ —— BKZ40
= -== BKZ-40 GSA
)

0 20 40 60 80 100

index i
Example from [dBvW25]
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Module Lattices

Number field K = Q[X]/P(X), where P € Q[X] irreducible, of degree d.
O its ring of integers. Kp =K Q®gR
I fractional ideal of Of: O-submodule of K s. t. 3z € K* | zI C O.

Module lattice M: defined with by,...,b, € K§ and I, ..., I, fractional ideals of K,
as M =1,b; + ...+ 1b,.
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Module Lattices

Number field K = Q[X]/P(X), where P € Q[X] irreducible, of degree d.

O its ring of integers. Kp =K Q®gR

I fractional ideal of Of: O-submodule of K s. t. 3z € K* | zI C O.

Module lattice M: defined with by,...,b, € K§ and I, ..., I, fractional ideals of K,
as M =1,b; + ...+ 1b,.

One may obtain a lattice in R% from M, by embedding elements of K into R9.

Ex.: canonical embedding, coefficient embedding.
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mBKZ: BKZ Generalized to Modules
(stemming from [LPSW19]’s mLLL)

Algorithm 1: mBKZ Algorithm Overview,
with an SVP oracle in dimension Sy

Input: pseudobasis B = (I, by,), of M C K}, blocksize By

1 while this step changes B do

for i in [1;7] do
Jj< min(i+ B —1,7)
Let I be such that vI = vK N Module(m;(Bf;,;1))
Let w be such that wI C M and m;(w) =v
Insert (w,I) into B at position ¢
Remove linear dependencies

W N o s W N

9 return B
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How does mBKZ perform with respect to BKZ?

Can we do better than embedding M in R™ and applying BKZ?

Context of Post-Quantum Standardizations
— important to know whether the structure can be exploited



State-of-the-Art

[LPSW19, MS20]: defined module-lattice versions of lattice reduction,
and studied their worst-case behavior only

[KK24]: first experimental study of module-LLL on NTRU lattices,
results limited to LLL, power-of-two cyclotomics, and no predictive framework

Our contributions:
predictions for the average case, asymptotics, experiments.
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Overview of the Presentation

I. Introduction
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C. Analysis of Dimension Gains
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A. The Geometric Series Assumption (GSA)

1. IN THE UNSTRUCTURED CASE (introduced in [Sch03])

For (by,...,b,,) € (R™)™ a lattice basis, ordered with vectors of descending norm,
by

we denote (b3, .. ) its Gram-Schmidt orthogonalisation, obtained recursively by setting:

b} = b; and, for each ¢ € [2;n]: b} = m;(b,),

where 7} : R® — R" is the linear operation projecting vectors orthogonally to SpanR{bj, o, bi_ 1

GSA Heuristic }

Using an algorithm A to reduce a basis,
there is an a4 € [0; 1] such that:

Vie [1;n—1],||b}, || = b}l
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A. The Geometric Series Assumption (GSA)

2. For MopULE BKZ

Norm and Determinant Notions:

Let 0: K — C%, 2 (0,(x), ..., 04(z)) denote the canonical embedding from K to C.

Algebraic norm on Ky N : Ky = R,z =[], 0;(),
algebraic norm of a fractional ideal I of Oy N(I) =

‘0]’5(/;1‘ forany z € K* | I C O.

(,): Kg —=C,(z,y) >, 0i(z)o;(y) defines the trace norm ||| : Ky = R,z = +/(z, z),
extended to KF in the natural way (for Gram-Schmidt orthogonalisation).

Given (b, I,,) a pseudobasis of M, B = (b,),, we define:

det(M) = /TA L A /N (det (ETB)) I1, V (I,).
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A. The Geometric Series Assumption (GSA)
2. FOrR MODULE BKZ

We Adapt the GSA Heuristic }

For (b, Ij); a pseudobasis of M C K and (b},); its Gram-Schmidt projection:

Vk e [1;r —1] ,det(b}I}) ~ adet(b),_; I 1)

— BKZg
—1| |s—mBKZg(.,
&—mBKZg,,) o y
v— mBKZg(u,.) v— mBKZg,,) \\
-2 mBKZg () 1 mBKZg(,,) N
0 20 40 60 80 100 120 140 160 0 2 4 6 8 10 12 14 16 18 20 22 24
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B. The Gaussian Heuristic

1. IN THE UNSTRUCTURED CASE

. R Here,
B is the unit ball

An example: .
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. R Here,
B is the unit ball

An example: .
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B. The Gaussian Heuristic

1. IN THE UNSTRUCTURED CASE

An example:

' . . Here,
31 points inside B, and Vols ~ 32. . . B is the unit ball
And approximation of shortest vector : . ’ L
length as radius of ball with two points: Lo o ° .
9 i L L °
- ( Vol ) ’ L S
where d is the dimension. L . - e
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B. The Gaussian Heuristic

1. IN THE UNSTRUCTURED CASE

An example:
31 points inside B, and Vols ~ 32.

And approximation of shortest vector
length as radius of ball with two points:

1
9 F
N(V013> ’

where d is the dimension.

Here: =0.27 ~ 0.25.

Here,
B is the unit ball
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B. The Gaussian Heuristic

2. A GAUSSIAN HEURISTIC FOR MODULES (FROM [GSVV24])

The number field K of degree d’s geometry yields new factor in A; approximation
for a module lattice M C K.

Indeed, given a vector, other vectors of the same Euclidean norm will be provided
by multiplication with roots of unity in K.

Hence the ball of radius A; will hold ¢ - “TK + 1 points, for an integer 7 in N* and pj
the number of roots of unity in K. In our heuristics, we will consider that it will
contain &£ + 1 points.
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Expressing the Module-BKZ (mBKZ) Slope aj

We Adapt the GSA Heuristic ]

We consider a distribution of random module lattices M of fixed determinant D
such that, denoting (b, I},); a pseudobasis of M C KDQK, and (b},)} its Gram-
Schmidt orthogonalisation, generating the lattice M*:

Vk € [1; 8 — 1], Eps{In(det(b},Ix))} = In (k) + Ep{lndet(by,_; I _1)}.

Which yields, as det(bil; + -+ b} Iy )= det(M) = D:

5 In(ag) = BxE{lndet (sI)} —In D,

where s is a shortest vector of Module(M*) and I such that s =sK N M*
Expressing E,,{Indet (sI)} provides the terms composing a-.
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Expressing the Module-BKZ (mBKZ) Slope aj

We have BK{l In(ag) =Ep{Indet(sl)} — %, where:

E y {Indet (sI)} = %\AK\ + %EM {n v (57s)} + Ep {n N (D)}

So:

In o 2
dK = By —1 (ty +ta+t3+1ty)




Expressing the Module-BKZ (mBKZ) Slope aj

We have BK{l In(ay) =Ep{lndet (sI)} — BL  where:

Bk’

E y {Indet (sI)} = %\AK\ + %EM {n v (57s)} + Ep {n N (D)}

So:

where:

In o 2
dK = By —1 (ty +ta+t3+1ty)

oz fn L)
D Pk
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Expressing the Module-BKZ (mBKZ) Slope aj

D where:

We have BK{l In(ag) =Ep{Indet(sl)} — Fre
1 1
Ep{Indet (s)} = 5| Ax| + 5B {in N (57s)} + Epr {In ()}
So:
In o g 2
e ACRCS RN
where:
|Is]] 1. |Akl
tl:EM{lnDdﬁlk ty ﬁln 74
\
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Expressing the Module-BKZ (mBKZ) Slope aj

We have 25=11n (ag) =Ep{lndet (sI)} — %, where:

2

E \ {lndet (sI)} = %\AK\ + %EM {0V (575)} + Epy {n N (D}

So:

In o g

d  Br—1

(ty + 1ty +t5+1,)
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Expressing the Module-BKZ (mBKZ) Slope aj

We have 2

So:

K2_1 In(ag) =Ep{Indet(sI)} — lnD , where:

Eps{lndet (sI)} =

%\AK\ + %EM {in v (57s)} + Epr {ln ()} .

Inoa, 2
d =~ Br-—1

where:

(ty + 1ty +t5+1,)

1. JAg]
1
Toq Mgl

_Ey N (D)}

d
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[Isl|

The Gaussian Heuristic Term ¢; = E;;{In =

DK

0.2

The generalized Gaussian 0.15

Heuristic for modules pro-

vides an estimation of ¢;.

For K a field with pp

E[ln \] — lghg (8x d)
o

roots of unity, denoting 0.05
Bi=dBk:

~ L __MFK
t~ 5n 2V01(35)> 0
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The Gaussian Heuristic Term ¢; = E;;{In =

DK

0.2

The generalized Gaussian 0.15

Heuristic for modules pro-

vides an estimation of ¢;.

For K a field with pp

E[ln \] — lghg (8x d)
o

roots of unity, denoting 0.05
Bi=dBk:

~ L __MFK
t~ 5n 2V01(235)> 0

In(f+2) _ In(2me) | Inj3 In 3
M - T 5 o (%)
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. o s A
The Discriminant Term ¢, = 2—1d In =5
of e
—0.02
e o @ ¢ *
5 004 .®
Constant in Sg-. 5 .
= —0.06
We calculate this term for cyclotomic 0.08 ® b
fields K = Q(w,,). ‘ .®
—0.1
0 10 20 30 40 50 60
p
=
Then: t, =33 pe (ng In(p) —In(p — 1)) .
p prime in N
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The Skewness Term t; = E)/{In

the canonical
the

inequality  gives

Using
bedding,
geometric
ts <0.

em-

arithmetico-

Then, modelling the shortest
vector as uniform of a sphere
yields, denoting v the digamma
function, (dg,dc) the signature

of K, and 8= dBg:

&l

\/_N(s s)
RN

0
—0.02
/N
-
S !
S~—
E
- ’
—0.06 ) ——Q(ws)
9 Q(w1s)
> Q(wis)
—0.08
10 15 20 25 30 35 40 45 50 55 60

t3%2 =

. (dw(f)wdawwm—lnm

+1nd—¢(%))
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&l

The Skewness Term t; = EM{l NG =7 }

Isf|
. . 0
Using the canonical em-
bedding, the arithmetico-
. . . . —0.02
geometric inequality gives ey
ty <O0. L
ze
S -0.04
. N—
Then, modelling the shortest I
vector as uniform of a sphere = —0.06f
yields, denoting v the digamma
function, (dg,dc) the signature 0.08 Y
of K, and 8 = dBx: 10 15 20 25 30 35 40 45 50 55 60

B =B -d

el (dw(f)ﬂcf;wwm—lnm +1nd—w(%)) _ e | (1)

Predicting Module Lattice Reduction December 19th, 2025. III. Our Analysis Paola de Perthuis 20/26



The Index Term ¢,

The pseudobases are normalized
to have Oy C I,
so: t4 < 0.

Modelling the probability that

I7! is a multiple of an ideal a C
1

Ok as Na)PR’

’

and denoting i the logarith-
mic derivative of the zeta func-

tion of K:

1 ¢k (Bk)
d Cx(BK)

1
tar > =g + o

_ Ey{nN()}

E[lnN(J)]

_1
20K

—0.01

—0.02

)

\ 4 \4 ¢—<o—¢ ‘P,,,ffj(r,,,,,,,,
4
4
ot Q(ws)
—o—Q(ws)
9 Q(wis)
- Q(wie)
10 15 20 25 30 35 40 50 55 60

B=Pk-d
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Comparing mBKZ and BKZ’s Performances

We implemented mBKZ and compare experimental slopes with our analysis bounding the (t,),

terms. Implementation built on top of pfLLL and g6k.

—+—Q 1
%Q(w;;) N
_ —00201 1 o Q(uws)
3 9 Q(wis)
5 & Qwrs)
2 —0.022 6
~
E
=]
[
£ —0.024
w
4
—0.026
30 35 40 45 50 55 60 65 70 75 80
B
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Comparing mBKZ and BKZ’s Performances

Inag

Denoting o the slope and 3 the block dimension in the unstructured case, —; a, yields,
denoting B,, = dB:

N
Beq=ﬂ+log<—|dff‘)—dlnﬂﬁ +d—1+o0(1)
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Next Open Questions

HKZ profile, tails and dimensions for free
Simulation

Lattice sieving using cyclotomic symmetries
Coefficient embeddings

Algebraic-Norm SVP Oracle

AR
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Conclusion

Full version: https://eprint.iacr.org/2025/1904
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—0.020 ;EEEEE‘BEEEFEEFEBE.BM
{ S5 E8888588888888884
ok
N
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=3 —4—Q(ws)
£ oo - ggf}“;
] 5.
——Q(ws)
~0.026 a0 Qwis) |4
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30 100 150 250 300 350 400

Thank you for your attention!
Do you have questions?
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