

Post-Quantum Public-Key Pseudorandom Correlation Functions for OT

Shweta Agrawal¹, Kaartik Bhushan², Geoffroy Couteau², and
Mahshid Riahinia³

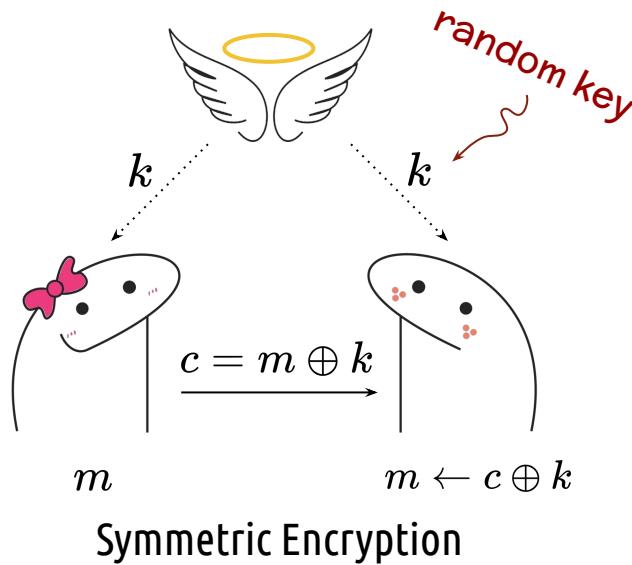
¹IIT Madras, India.

²Université Paris Cité, CNRS, IRIF, Paris, France.

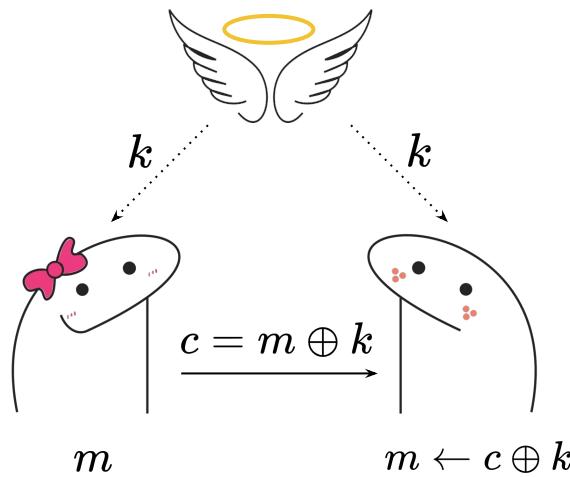
³ENS, CNRS, visitor at IRIF, Paris, France.

Introduction: Correlated Randomness

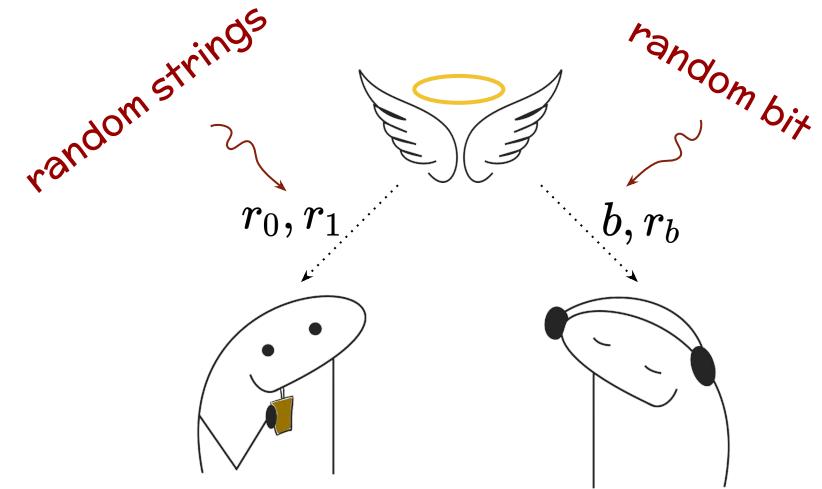
Introduction: Correlated Randomness



Introduction: Correlated Randomness

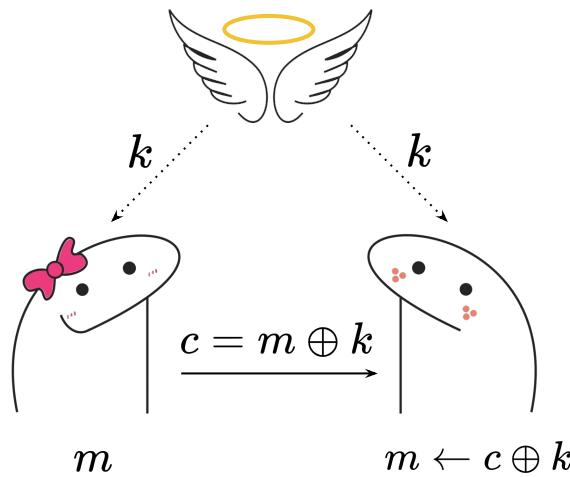


Symmetric Encryption

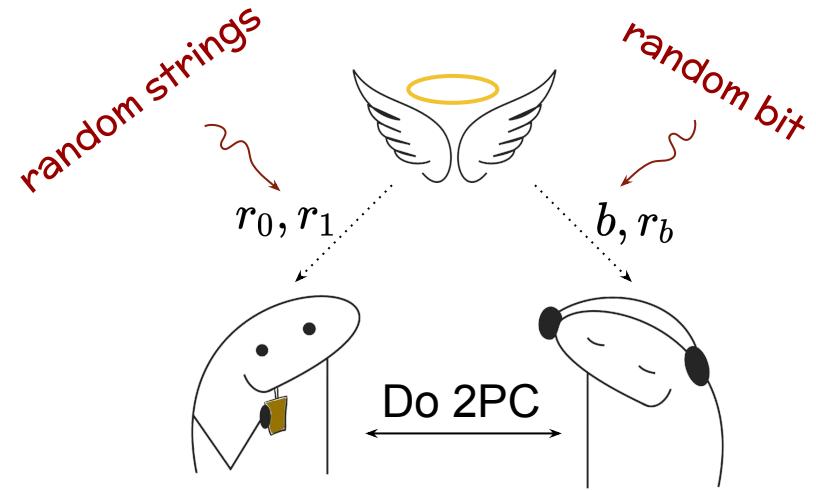


Oblivious Transfer (OT) Correlation

Introduction: Correlated Randomness



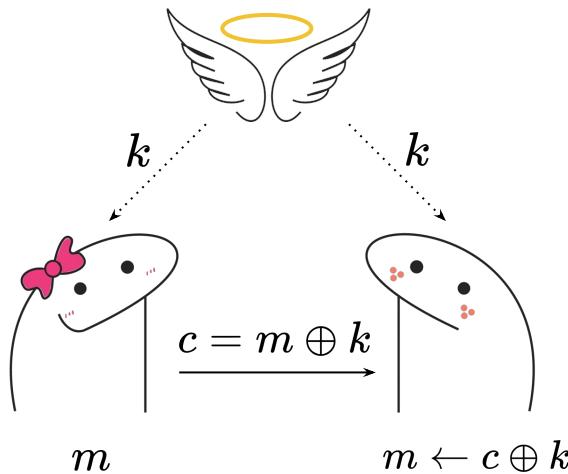
Symmetric Encryption



Oblivious Transfer (OT) Correlation

2PC: 2-Party Computation

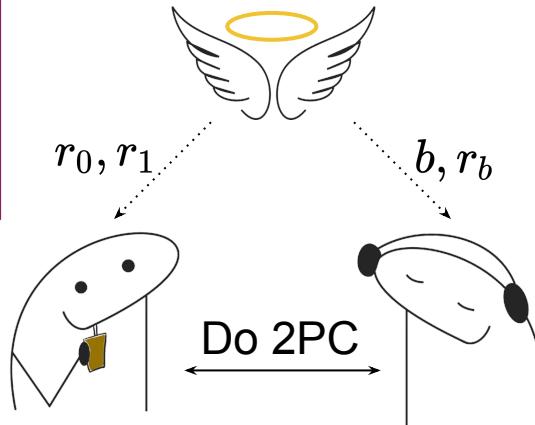
Introduction: Correlated Randomness



Symmetric Encryption

Secure Computation

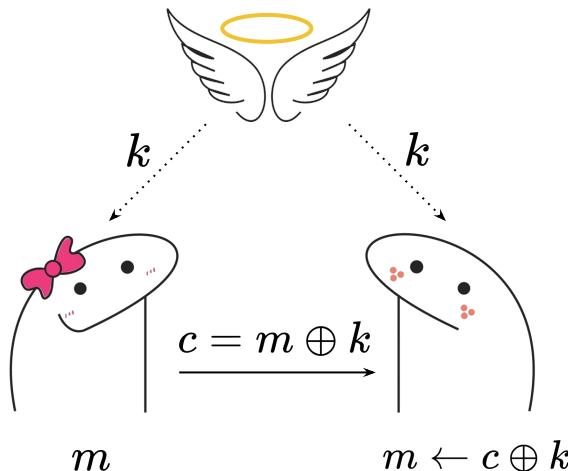
- party 1 has x
- party 2 has y
- Goal: compute $f(x,y)$ without revealing x,y



Oblivious Transfer (OT) Correlation

2PC: 2-Party Computation

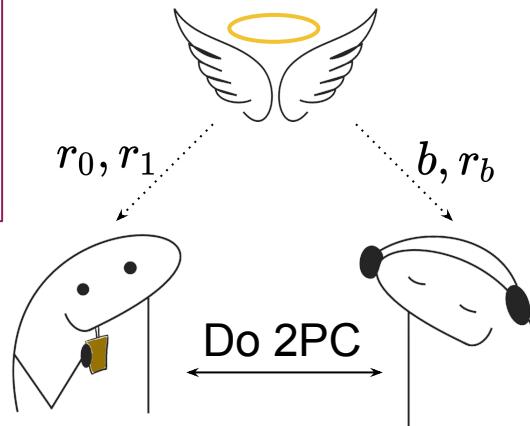
Introduction: Correlated Randomness



Symmetric Encryption

Secure Computation

- party 1 has x
- party 2 has y
- Goal: compute $f(x,y)$ without revealing x,y



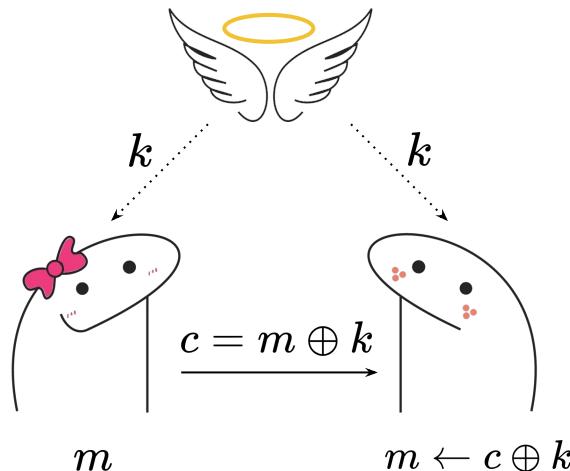
Oblivious Transfer (OT) Correlation

Secure Communication

2PC: 2-Party Computation

Secure Computation

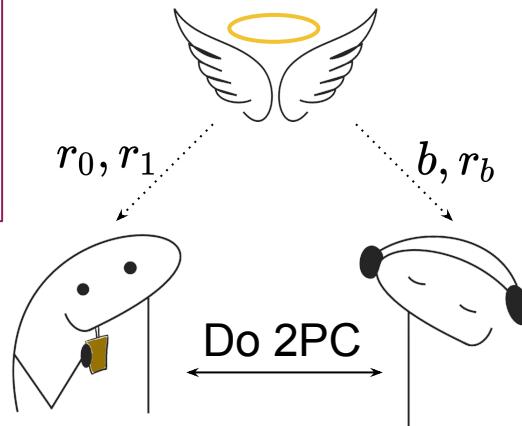
Introduction: Correlated Randomness



Symmetric Encryption

Secure Computation

- party 1 has x
- party 2 has y
- Goal: compute $f(x,y)$ without revealing x,y



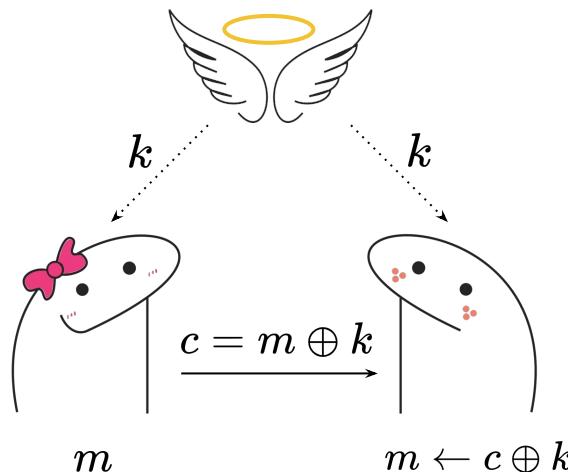
Oblivious Transfer (OT) Correlation

Secure Communication

2PC: 2-Party Computation

Fast & Info-Theoretic Secure Computation

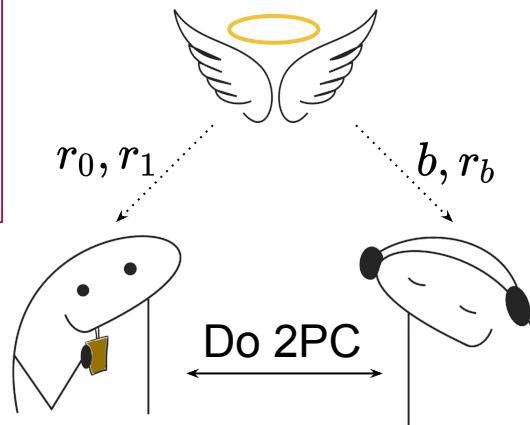
Introduction: Correlated Randomness



Symmetric Encryption

Secure Computation

- party 1 has x
- party 2 has y
- Goal: compute $f(x,y)$ without revealing x,y



Oblivious Transfer (OT) Correlation

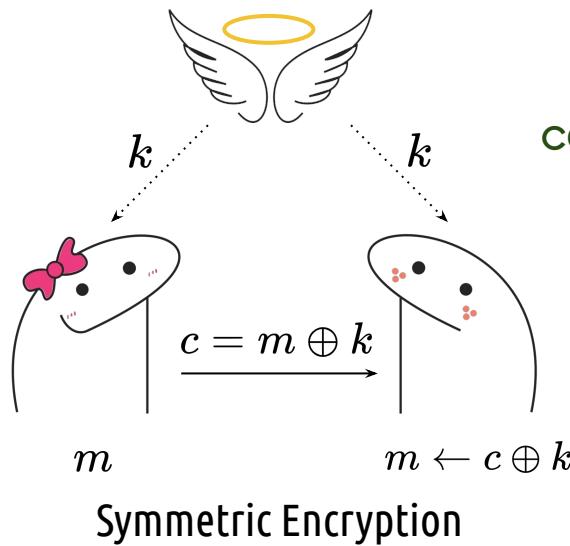
Secure Communication

2PC: 2-Party Computation

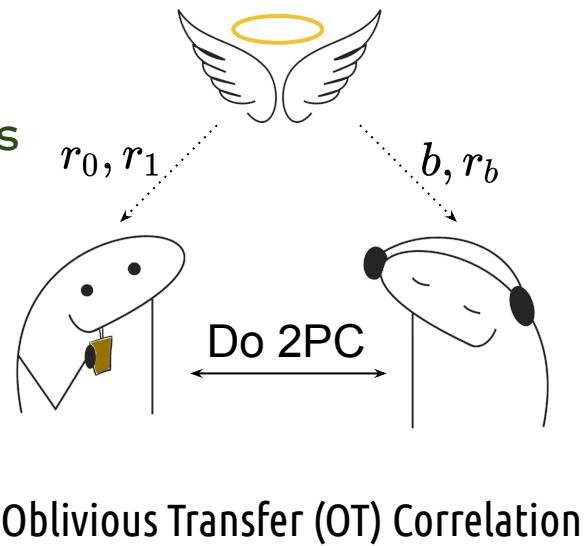
Fast & Info-Theoretic Secure Computation

f has n gates : O(n) OT pairs -> send 4 bits per AND

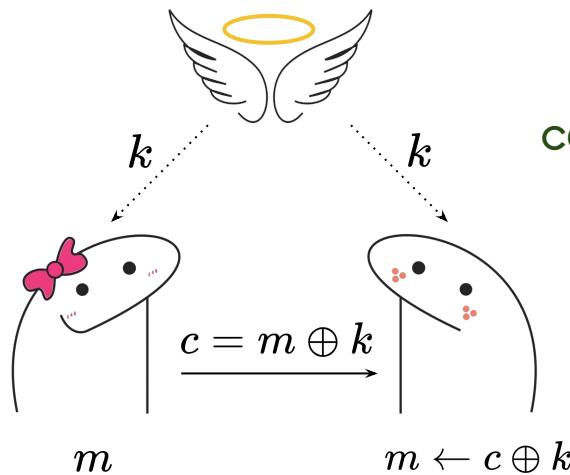
Introduction: Correlated Randomness



Can we generate correlated randomness on demand?

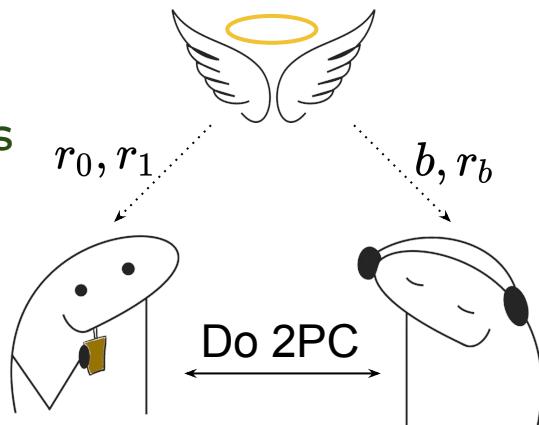


Introduction: Correlated Randomness



Symmetric Encryption

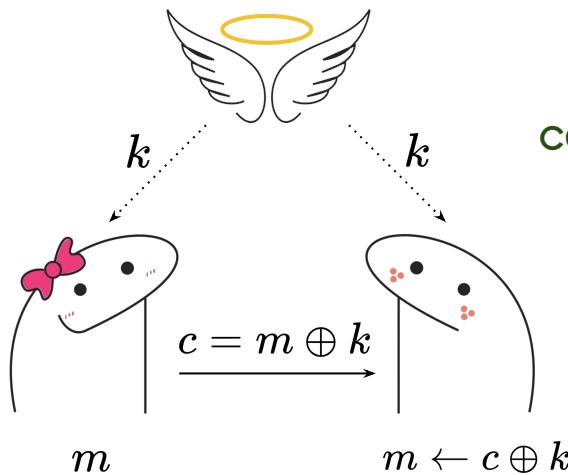
Can we generate correlated randomness on demand?



Oblivious Transfer (OT) Correlation

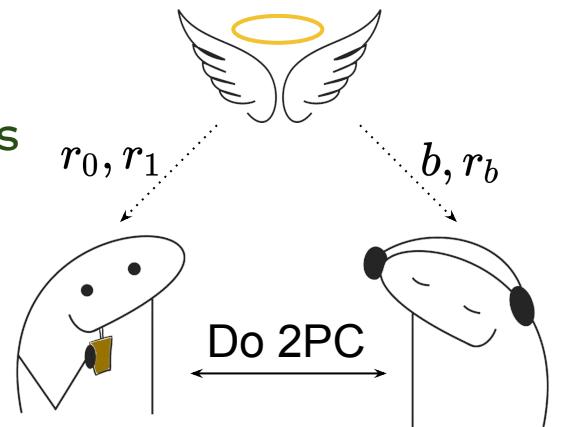
- [BCGIKS 19] Pseudorandom Correlation Generators (PCGs)
- [BCGIKS 20] Pseudorandom Correlation Functions (PCFs)

Introduction: Correlated Randomness



Symmetric Encryption

Can we generate correlated randomness on demand?



Oblivious Transfer (OT) Correlation

[BCGIKS 19] Pseudorandom Correlation Generators (PCGs)

[BCGIKS 20] Pseudorandom Correlation Functions (PCFs)

Pseudorandom Correlation Functions

Definition

Pseudorandom Correlation Functions [BCGIKS20]

on-demand generation
of
correlated randomness

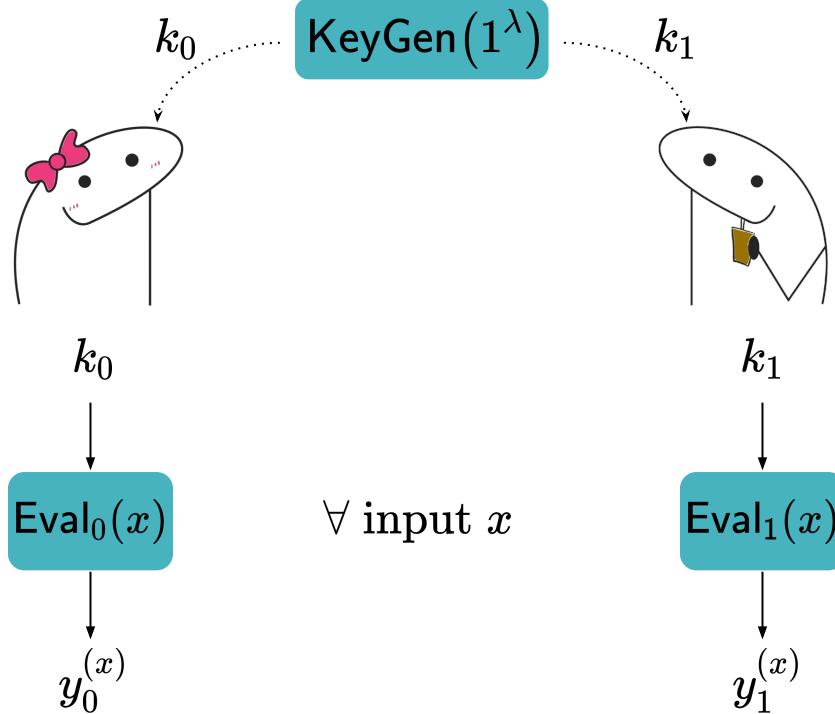
Pseudorandom Correlation Functions [BCGIKS20]

on-demand generation
of
correlated randomness



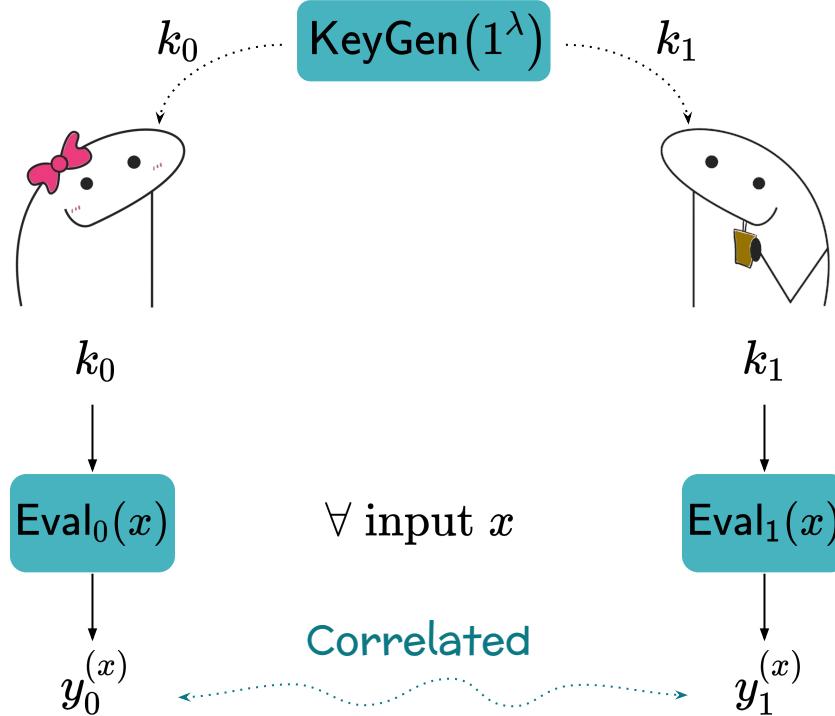
Pseudorandom Correlation Functions [BCGIKS20]

on-demand generation
of
correlated randomness



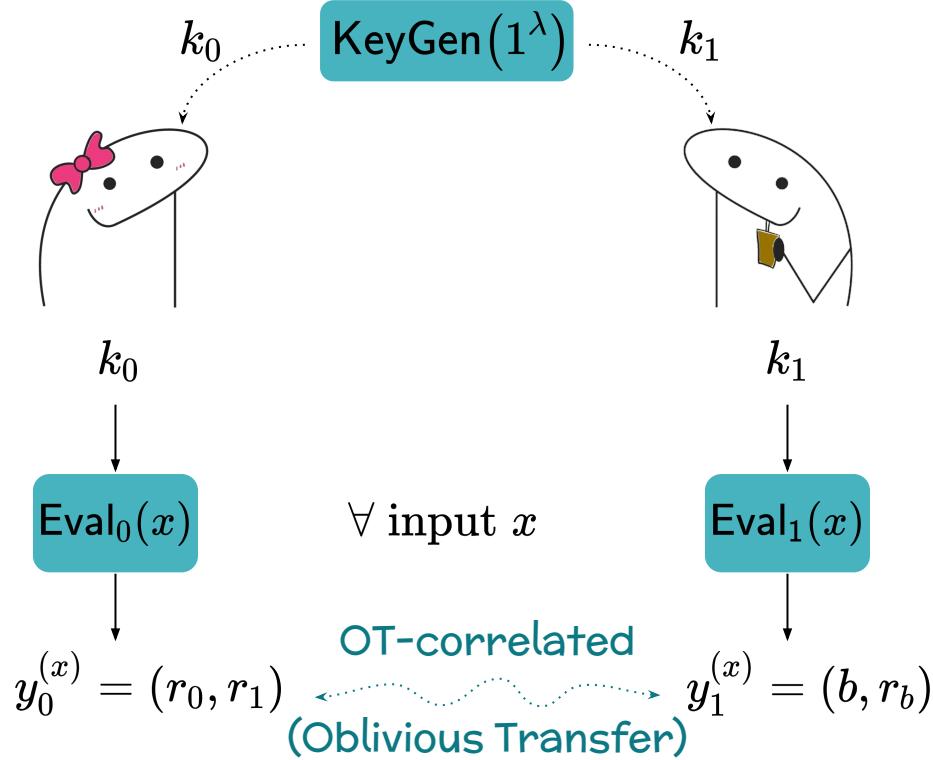
Pseudorandom Correlation Functions [BCGIKS20]

on-demand generation
of
correlated randomness



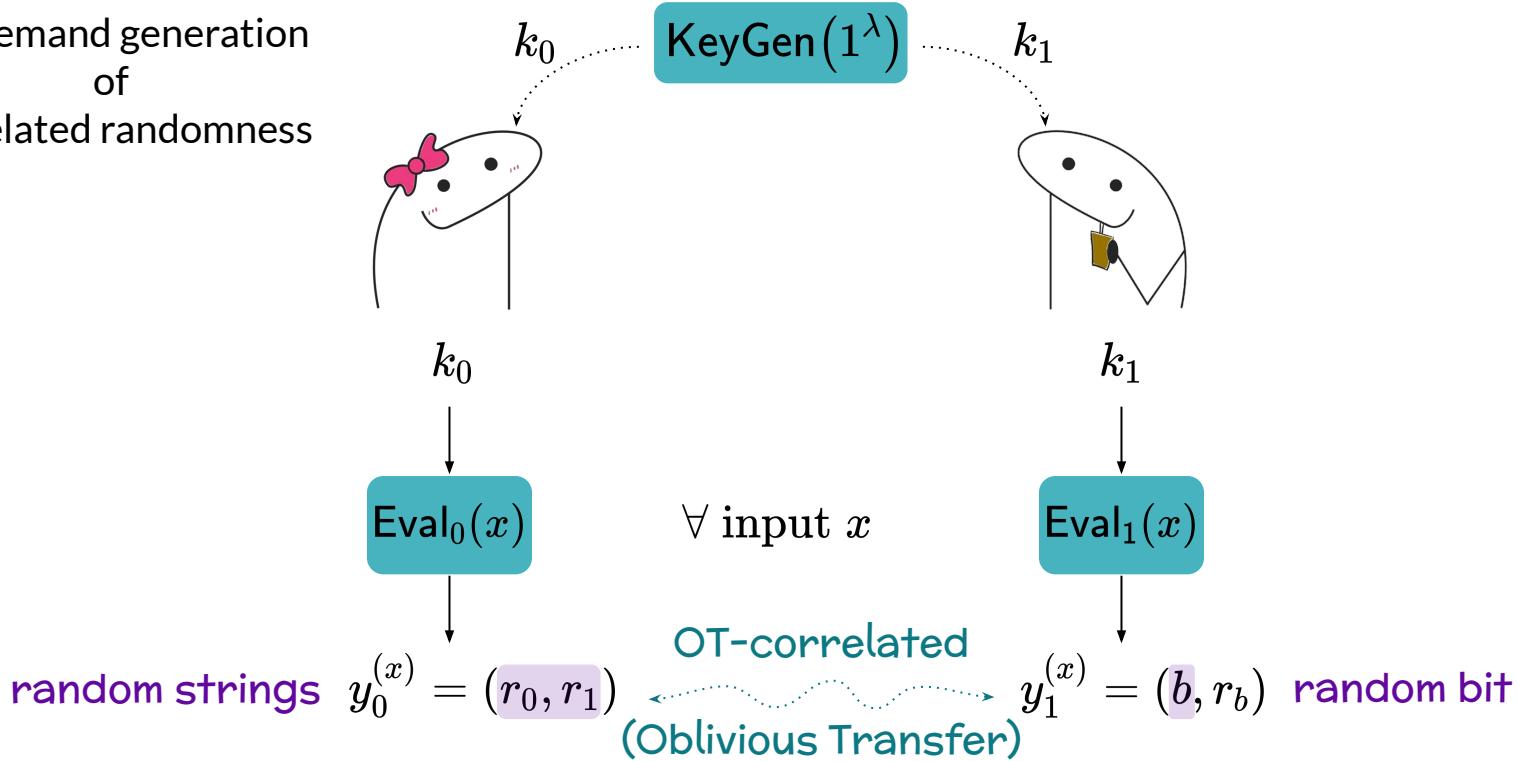
Pseudorandom Correlation Functions [BCGIKS20]

on-demand generation
of
correlated randomness



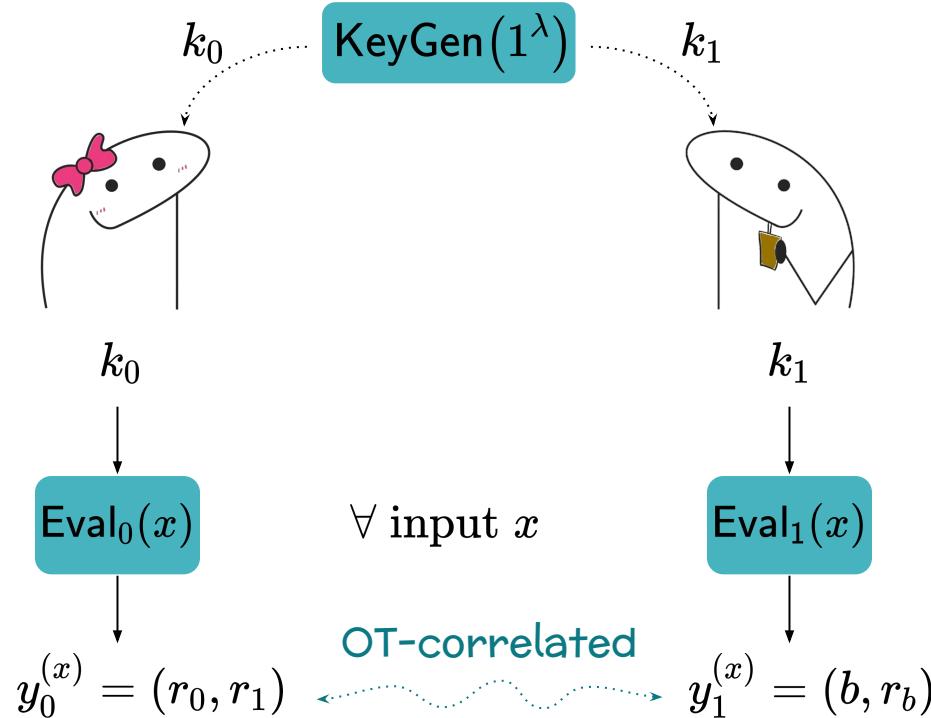
Pseudorandom Correlation Functions [BCGIKS20]

on-demand generation
of
correlated randomness



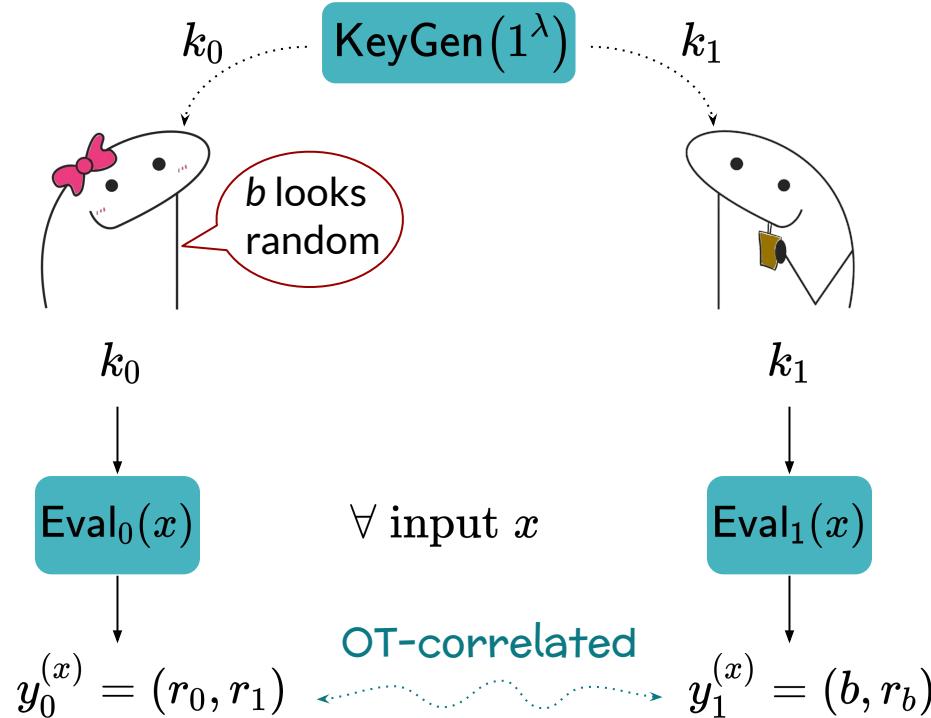
Pseudorandom Correlation Functions [BCGIKS20]

security:
*things look random
up to correlation*



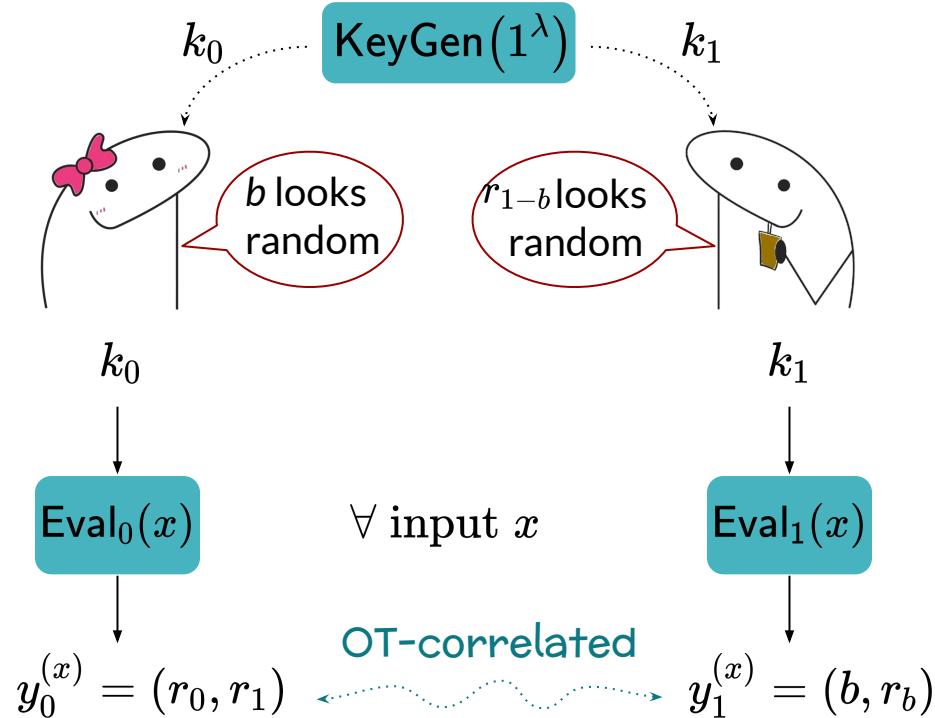
Pseudorandom Correlation Functions [BCGIKS20]

security:
things look random
up to correlation



Pseudorandom Correlation Functions [BCGIKS20]

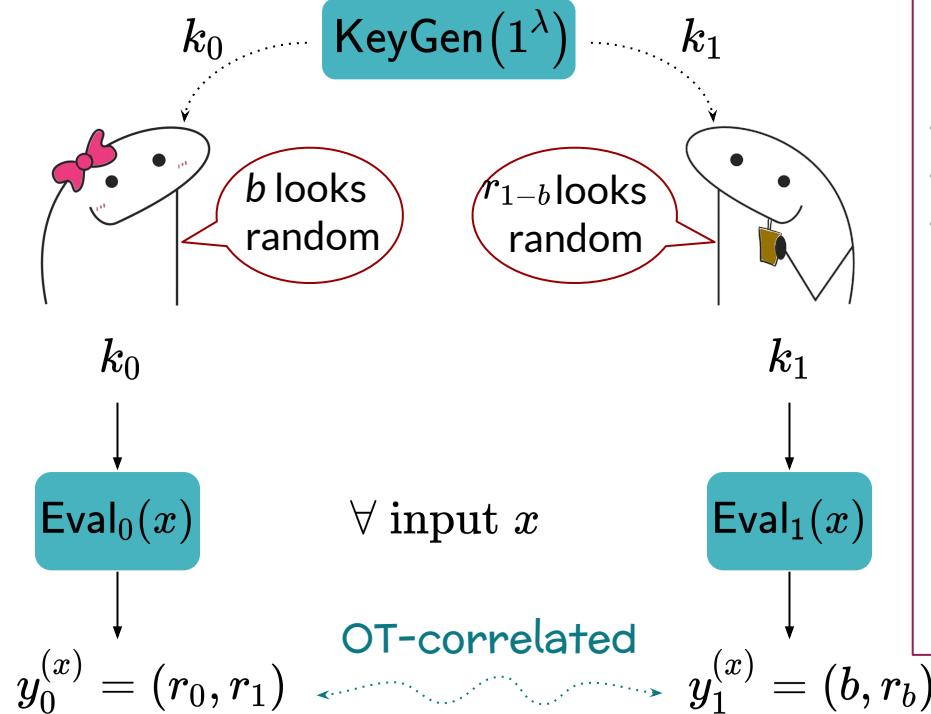
security:
things look random
up to correlation



Pseudorandom Correlation Functions

[BCGIKS20]

security:
things look random
up to correlation



Application

Secure Computation

- party 1 has x
- party 2 has y
- Goal: compute $f(x,y)$ without revealing x,y

[GMW87]

$|f|=n$:

$O(n)$ OT correlations

||

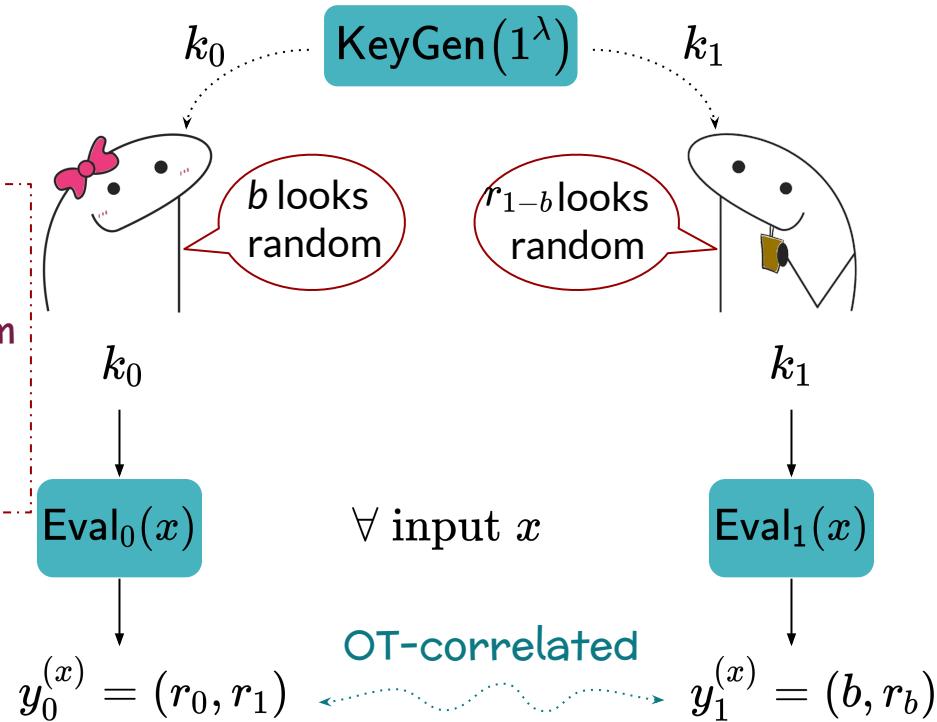
send 4 bits/AND

Pseudorandom Correlation Functions [BCGIKS20]

Our contribution:

Efficient* Post-Quantum
Public-Key PCF
for
OT Correlations

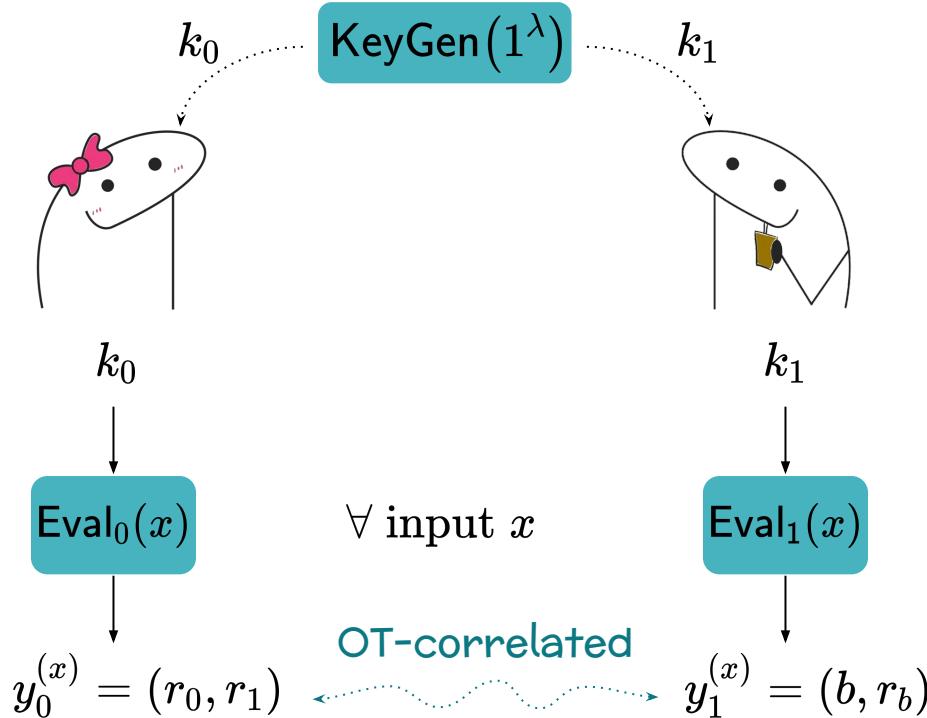
* Efficiency \sim #OT per second



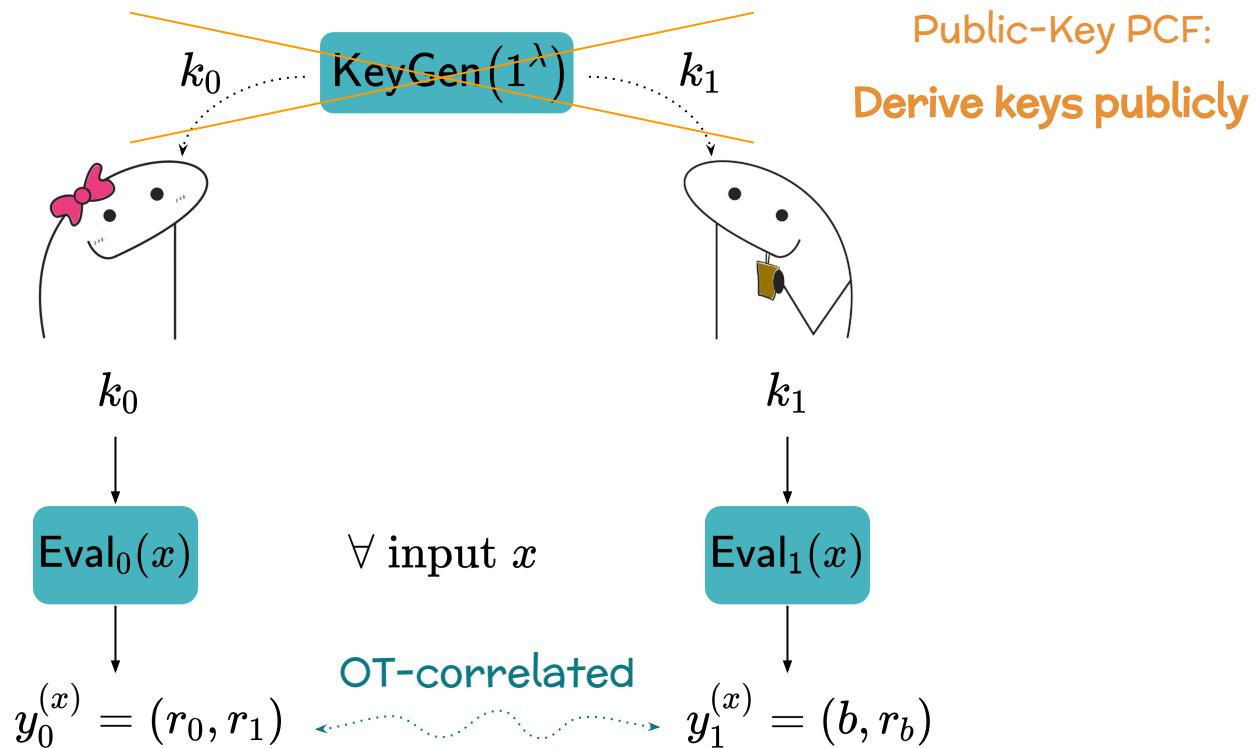
Public-Key

Pseudorandom Correlation Functions

Pseudorandom Correlation Functions [BCGIKS20]



Public-Key Pseudorandom Correlation Functions [BCMPR24]



Public-Key Pseudorandom Correlation Functions [BCMPR24]

Public-Key Pseudorandom Correlation Functions [BCMPR24]

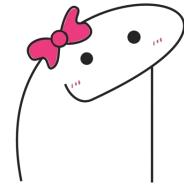
Key Derivation



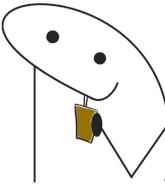
Evaluation

Public-Key Pseudorandom Correlation Functions [BCMPR24]

Key Derivation



pp

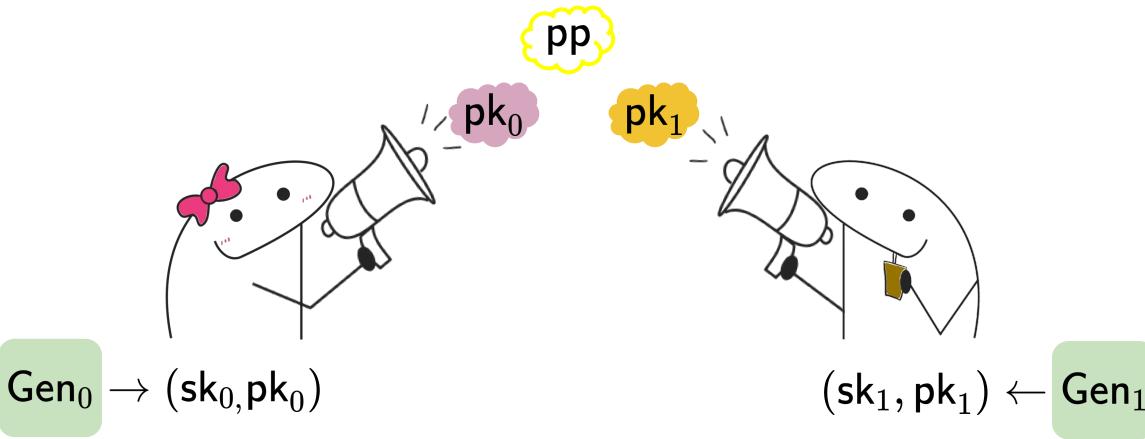


Evaluation

Public-Key Pseudorandom Correlation Functions [BCMPR24]

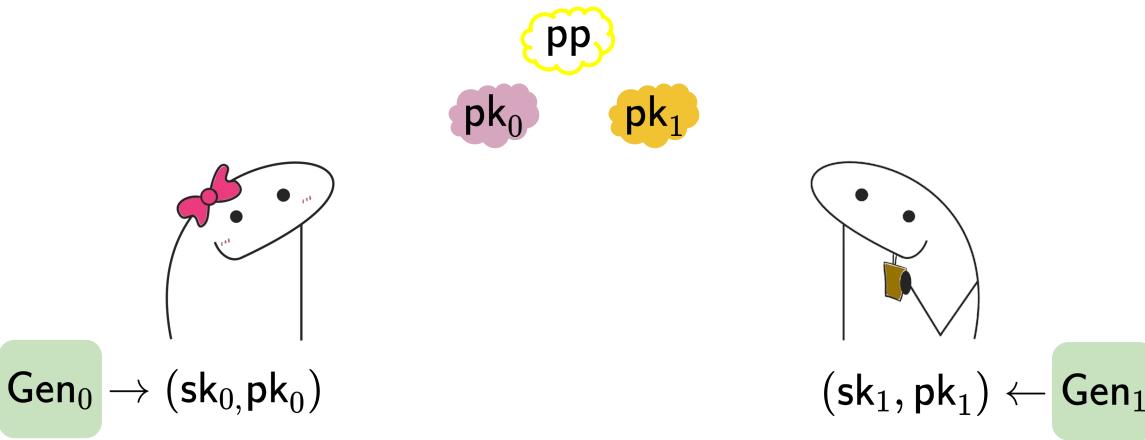
Key Derivation

Evaluation



Public-Key Pseudorandom Correlation Functions [BCMPR24]

Key Derivation



Public-Key Pseudorandom Correlation Functions [BCMPR24]

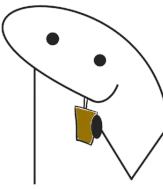
Key Derivation

$\text{Gen}_0 \rightarrow (\text{sk}_0, \text{pk}_0)$

$\text{KeyDer}(\text{sk}_0, \text{pk}_1) \rightarrow k_0$



pp
 pk_0 pk_1



$(\text{sk}_1, \text{pk}_1) \leftarrow \text{Gen}_1$

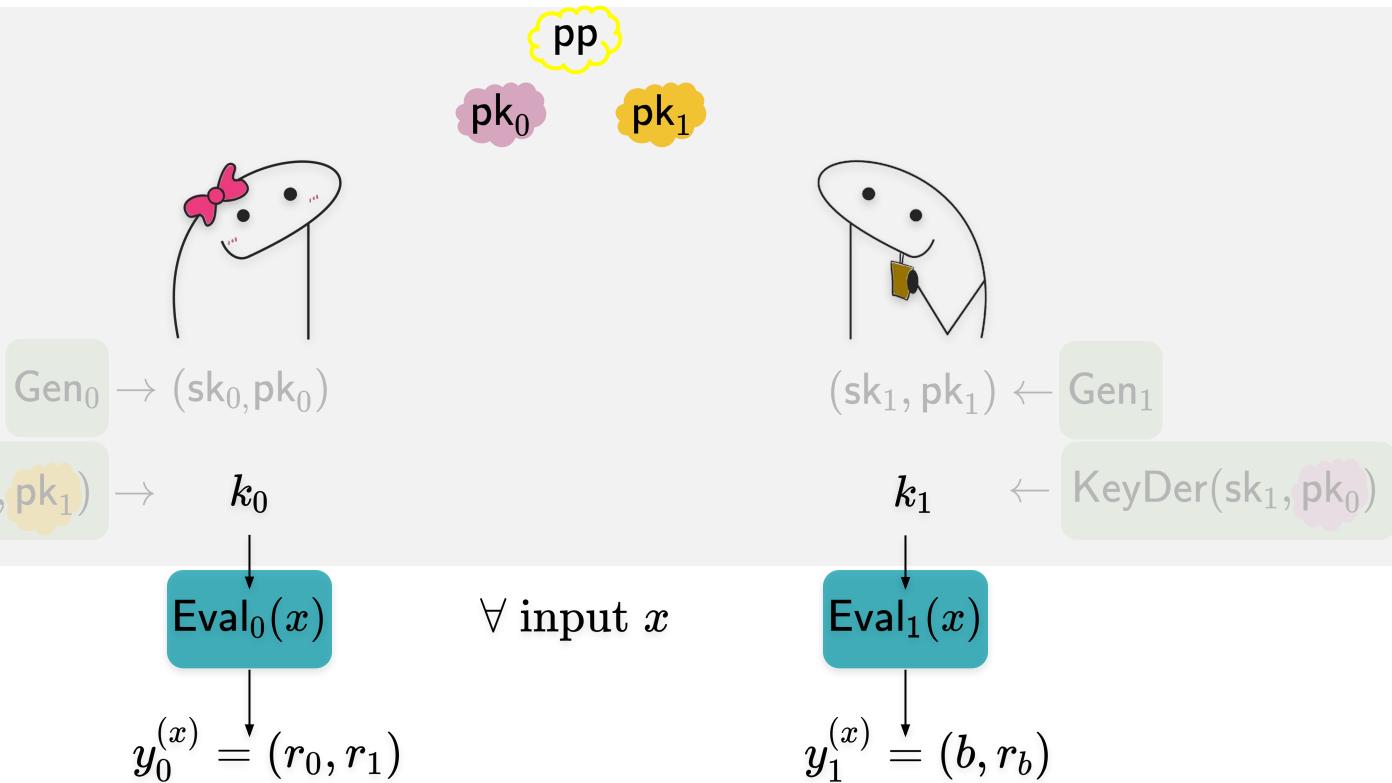
$k_1 \leftarrow \text{KeyDer}(\text{sk}_1, \text{pk}_0)$

Evaluation

Public-Key Pseudorandom Correlation Functions [BCMPR24]

Key Derivation

Evaluation

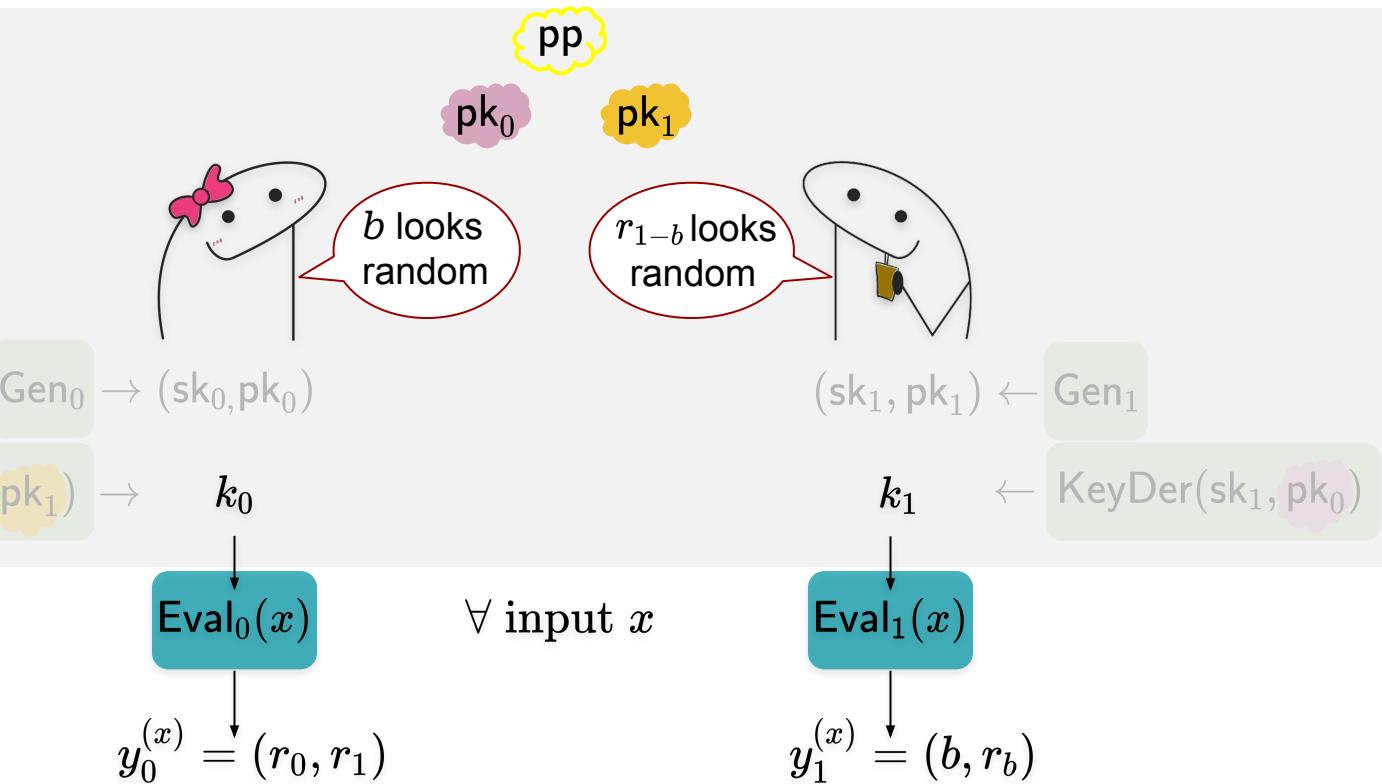


Public-Key Pseudorandom Correlation Functions [BCMPR24]

Key Derivation

security:

Evaluation



Our Contributions

Contributions

Efficient Public-Key PCF for OT Correlations from Lattices

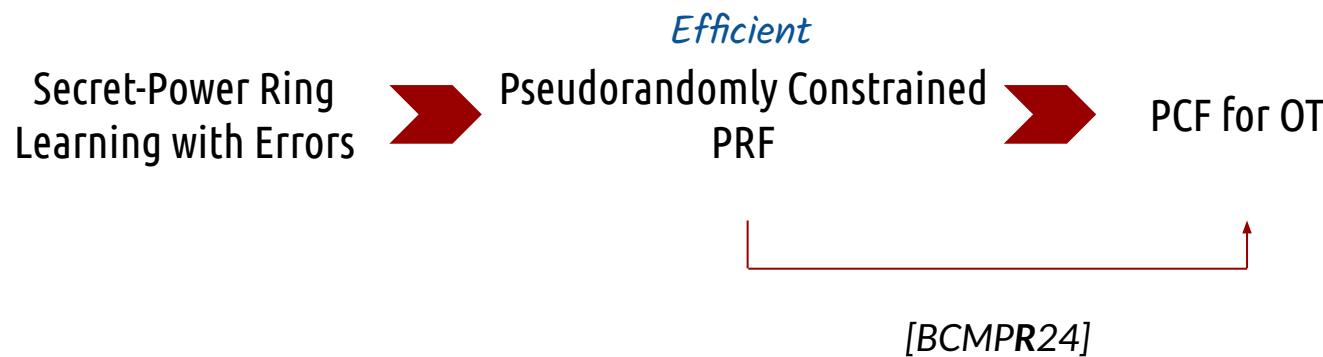
Secret-Power Ring
Learning with Errors

Contributions

Efficient Public-Key PCF for OT Correlations from Lattices

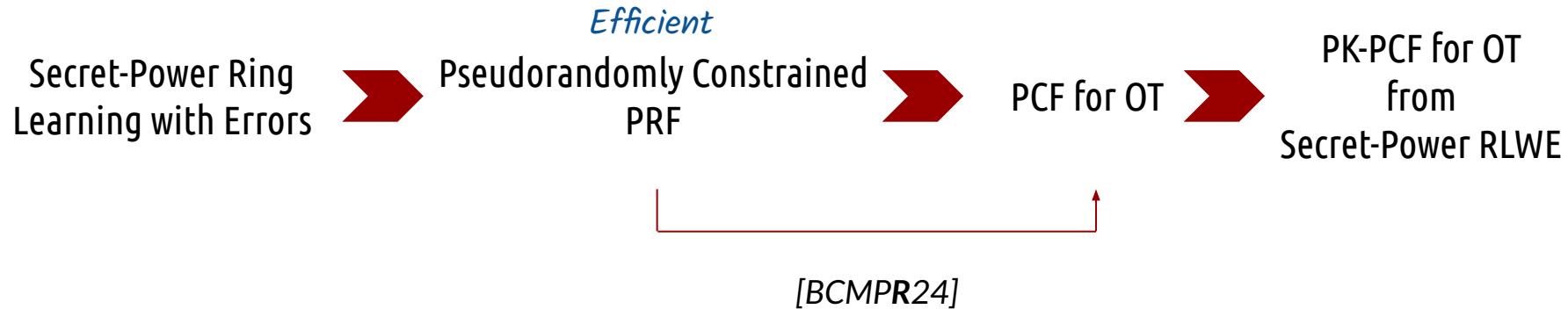
Contributions

Efficient Public-Key PCF for OT Correlations from Lattices



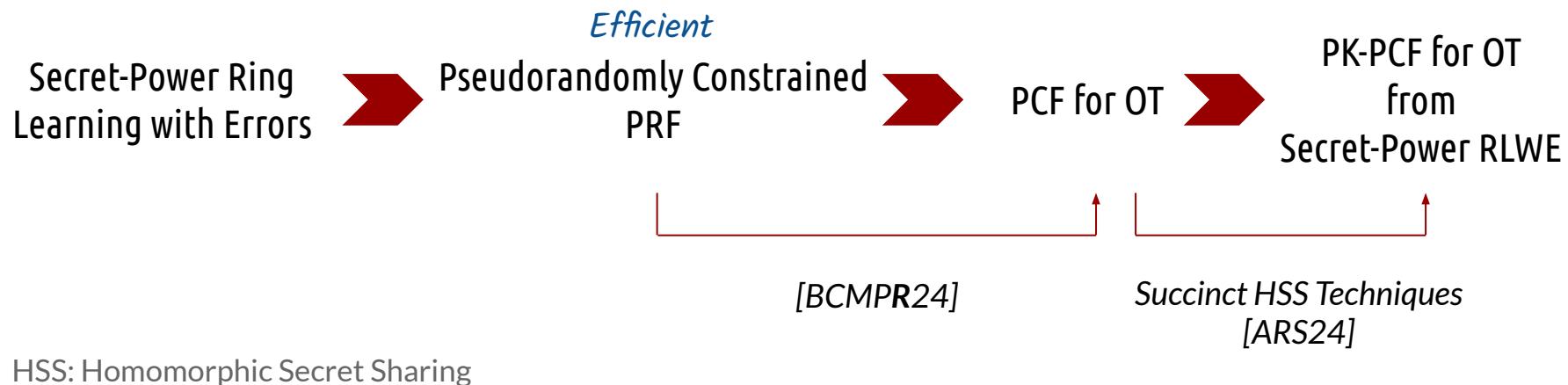
Contributions

Efficient Public-Key PCF for OT Correlations from Lattices



Contributions

Efficient Public-Key PCF for OT Correlations from Lattices



Contributions

Efficient Public-Key PCF for OT Correlations from Lattices

In this talk

Contributions

Efficient Public-Key PCF for OT Correlations from Lattices

In this talk

Pseudorandom Functions

Pseudorandom Functions (PRFs) [GGM86]

Definition. Deterministic keyed functions indistinguishable from truly random functions.

$$F : \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$$

Set of outputs **with** msk

010	11	101	1101	110	101	010	1
100111	10	0100	1001	1000	11	100	
11010	1010	1111	101011	010001			
1110010	10101000	1011	01001				
1000	11001	10101011	100101				
10110	101111	00000	10001	11			

Compute using msk $\xleftarrow{\$} \mathcal{K}$

Pseudorandom Functions (PRFs) [GGM86]

Definition. Deterministic keyed functions indistinguishable from truly random functions.

$$F : \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$$

Set of outputs **with** msk

```
010 11 101 1101 110 101 010 1
 100111 10 0100 1001 1000 11 100
11010 1010 1111 101011 010001
 1110010 10101000 1011 01001
 1000 11001 10101011 100101
10110 101111 00000 10001 11
```

Compute using msk $\xleftarrow{\$} \mathcal{K}$

Set of outputs **without** msk

Pseudorandom Functions (PRFs) [GGM86]

Definition. Deterministic keyed functions indistinguishable from truly random functions.

$$F : \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$$

Set of outputs **with** msk

010	11	101	1101	110	101	010	1
100111	10	0100	1001	1000	11	100	
11010	1010	1111	101011	010001			
1110010	10101000	1011	01001				
1000	11001	10101011	100101				
10110	101111	00000	10001	11			

Compute using $\text{msk} \xleftarrow{\$} \mathcal{K}$

Set of outputs **without** msk

11				010
			1001	
		1111		
			1011	
			11001	

with oracle queries on arbitrary / random inputs

PRF **weak PRF**

Constrained Pseudorandom Functions

Constrained Pseudorandom Functions (CPRFs) [BW13, KPTZ13, BGI14]

Pseudorandom Functions *with constrained access to the evaluation.*

Set of outputs **with** msk

```
010 11 101 1101 110 101 010 1  
100111 10 0100 1001 1000 11 100  
11010 1010 1111 101011 010001  
1110010 10101000 1011 01001  
1000 11001 10101011 100101  
10110 101111 00000 10001 11
```

Compute using msk $\xleftarrow{\$} \mathcal{K}$

Set of outputs **without** msk

```
11 010  
1001  
1111 1011  
11001
```

with oracle queries on arbitrary / random inputs

Constrained Pseudorandom Functions (CPRFs) [BW13, KPTZ13, BGI14]

Pseudorandom Functions *with constrained access to the evaluation.*

Set of outputs **with** msk

010	11	101	1101	110	101	010	1
100111	10	0100	1001	1000	11	100	
11010	1010	1111	101011	010001			
1110010	10101000	1011	01001				
1000	11001	10101011	100101				
10110	101111	00000	10001	11			

ck

For a subset
 $S \subset \mathcal{X}$

Set of outputs **without** msk

11				010
			1001	
		1111		
			1011	
		11001		

Compute using msk $\xleftarrow{\$} \mathcal{K}$

with oracle queries on arbitrary / random inputs

Constrained Pseudorandom Functions (CPRFs) BW13, KPTZ13, BGI14

Pseudorandom Functions *with constrained access to the evaluation.*

Set of outputs **with** msk

010	11	101	1101	110	101	010	1
100111	10	0100	1001	1000	11	100	
11010	1010	1111	101011	010001			
1110010	10101000	1011	01001				
1000	11001	10101011	100101				
10110	101111	00000	10001	11			

ck

For a subset
 $S \subset \mathcal{X}$

Compute using msk $\xleftarrow{\$} \mathcal{K}$

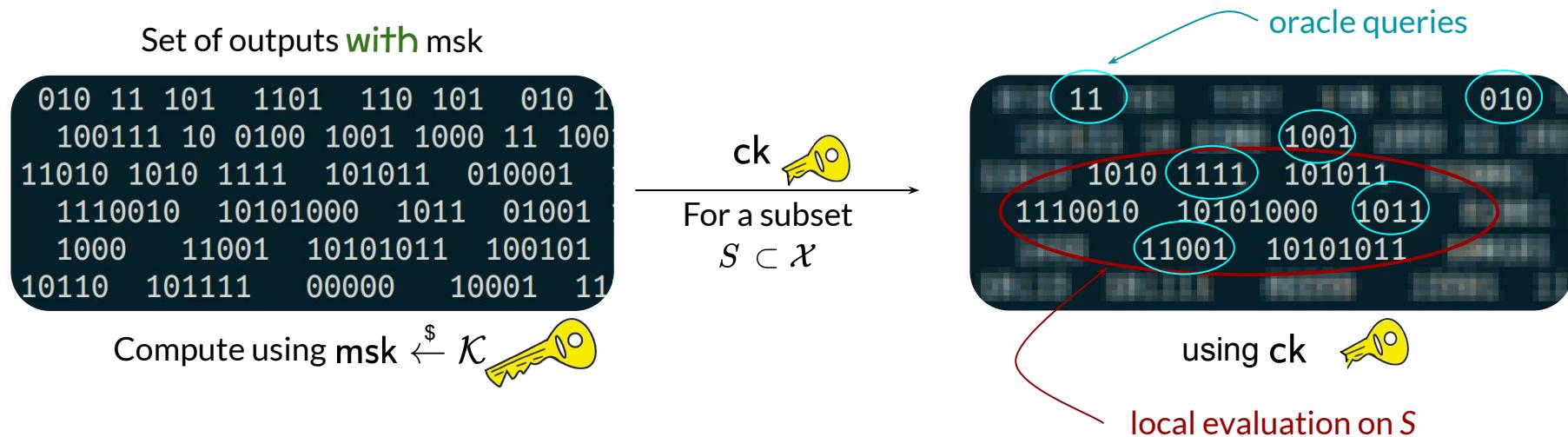
11				010
			1001	
	1010	1111	101011	
1110010	10101000	1011		
	11001	10101011		

using ck

local evaluation on S

Constrained Pseudorandom Functions (CPRFs) BW13, KPTZ13, BGI14

Pseudorandom Functions *with constrained access to the evaluation.*



Constrained Pseudorandom Functions (CPRFs) BW13, KPTZ13, BGI14

Pseudorandom Functions *with constrained access to the evaluation.*

ck_S “=” msk **only** for all $x \in S$

Set of outputs **with** msk

010	11	101	1101	110	101	010	1
100111	10	0100	1001	1000	11	100	
11010	1010	1111	101011	010001			
1110010	10101000	1011	01001				
1000	11001	10101011	100101				
10110	101111	00000	10001	11			

ck
For a subset
 $S \subset \mathcal{X}$

Compute using msk $\xleftarrow{\$} \mathcal{K}$

11				010
			1001	
	1010	1111	101011	
1110010	10101000	1011		
	11001	10101011		

using ck

local evaluation on S

Constrained Pseudorandom Functions (CPRFs) [BW13, KPTZ13, BGI14]

Pseudorandom Functions *with constrained access to the evaluation.*

- Every predicate $F : \mathcal{X} \rightarrow \{0, 1\}$ defines a subset $S_F = \{x \in \mathcal{X} : F(x) = 0\}$

Set of outputs **with** msk

010	11	101	1101	110	101	010	1
100111	10	0100	1001	1000	11	100	
11010	1010	1111	101011	010001			
1110010	10101000	1011	01001				
1000	11001	10101011	100101				
10110	101111	00000	10001	11			

Compute using msk $\xleftarrow{\$} \mathcal{K}$

11				010
			1001	
	1010	1111	101011	
1110010	10101000	1011		
	11001	10101011		

using \mathbf{ck}_F

local evaluation on S_F

Constrained Pseudorandom Functions (CPRFs)_{BW13, KPTZ13, BGI14}

Pseudorandom Functions *with constrained access to the evaluation.*

- Every predicate $F : \mathcal{X} \rightarrow \{0, 1\}$ defines a subset $S_F = \{x \in \mathcal{X} : F(x) = 0\}$

$\overbrace{\hspace{10em}}$

(w)PRF \rightsquigarrow Pseudorandomly Constrained PRF

Set of outputs **with** msk

010	11	101	1101	110	101	010	1
100111	10	0100	1001	1000	11	100	
11010	1010	1111	101011	010001			
1110010	10101000	1011	01001				
1000	11001	10101011	100101				
10110	101111	00000	10001	11			

Compute using msk $\xleftarrow{\$} \mathcal{K}$

11				010
			1001	
	1010	1111	101011	
1110010	10101000	1011		
	11001	10101011		

using \mathbf{ck}_F

local evaluation on S_F

Pseudorandom Correlation Functions for Oblivious Transfer

from pseudorandomly constrained PRFs

PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]

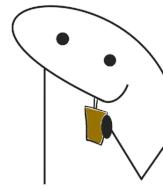
PCF for OT from Pseudorandomly Constrained PRFs [BCMPR24]

- wPRF $F_k : \mathcal{X} \rightarrow \{0, 1\}$

PCF for OT from Pseudorandomly Constrained PRFs [BCMPR24]

- wPRF $F_k : \mathcal{X} \rightarrow \{0, 1\}$
- CPRF for F_k and $\overline{F_k}$

PCF for OT from Pseudorandomly Constrained PRFs [BCMPR24]



- wPRF $F_k : \mathcal{X} \rightarrow \{0, 1\}$

- CPRF for F_k and $\overline{F_k}$

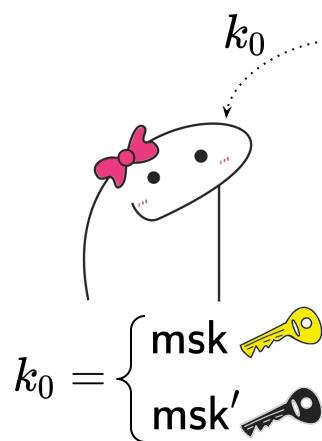
can generate a **ck** for either:

-any x s.t. $F_k(x)=0$

or

-any x s.t. $F_k(x)=1$

PCF for OT from Pseudorandomly Constrained PRFs [BCMPR24]

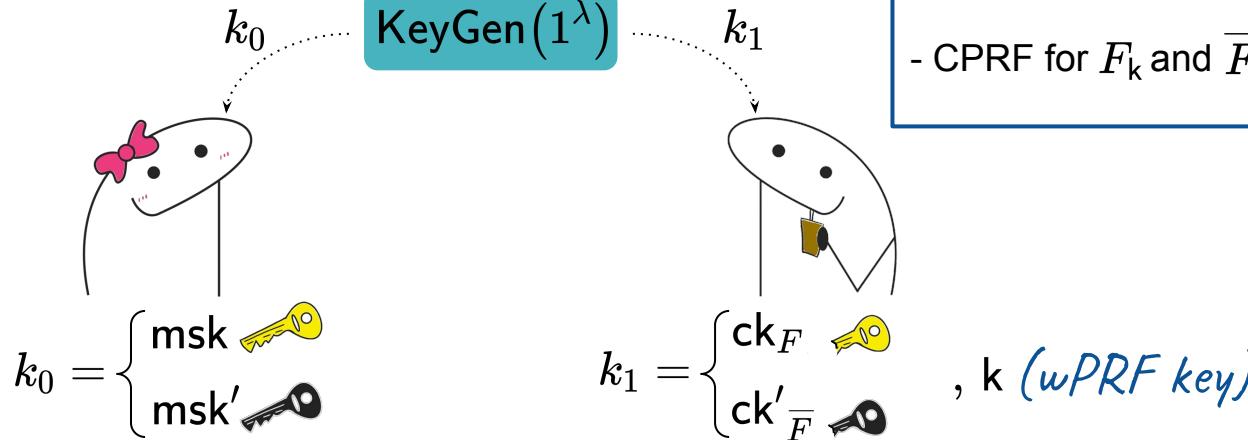


$\text{KeyGen}(1^\lambda)$

- wPRF $F_k : \mathcal{X} \rightarrow \{0, 1\}$
- CPRF for F_k and $\overline{F_k}$

PCF for OT from Pseudorandomly Constrained PRFs

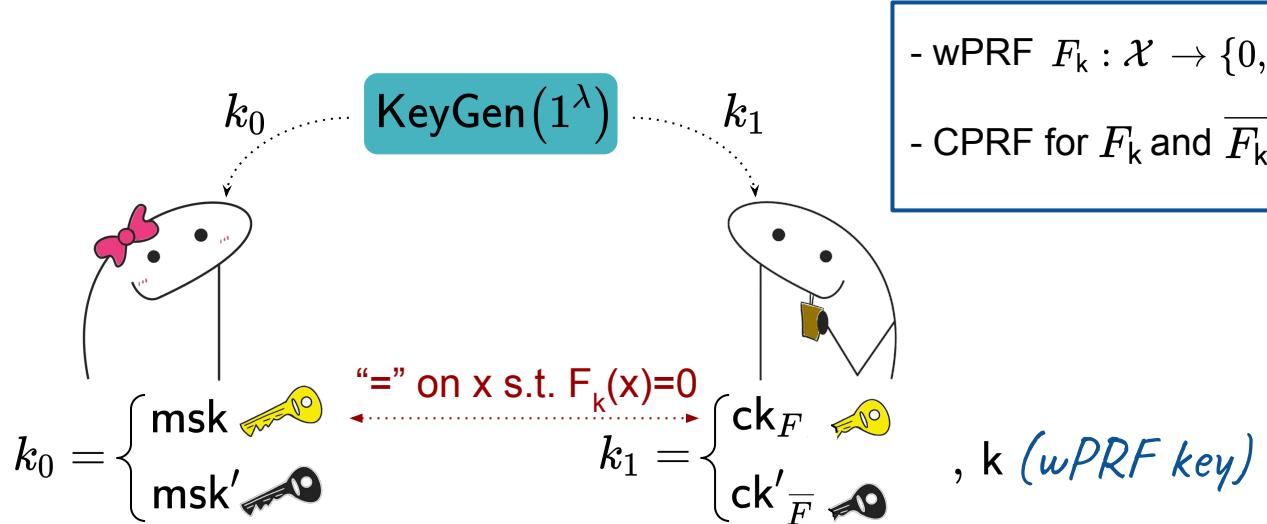
[BCMPR24]



- wPRF $F_k : \mathcal{X} \rightarrow \{0, 1\}$
- CPRF for F_k and $\overline{F_k}$

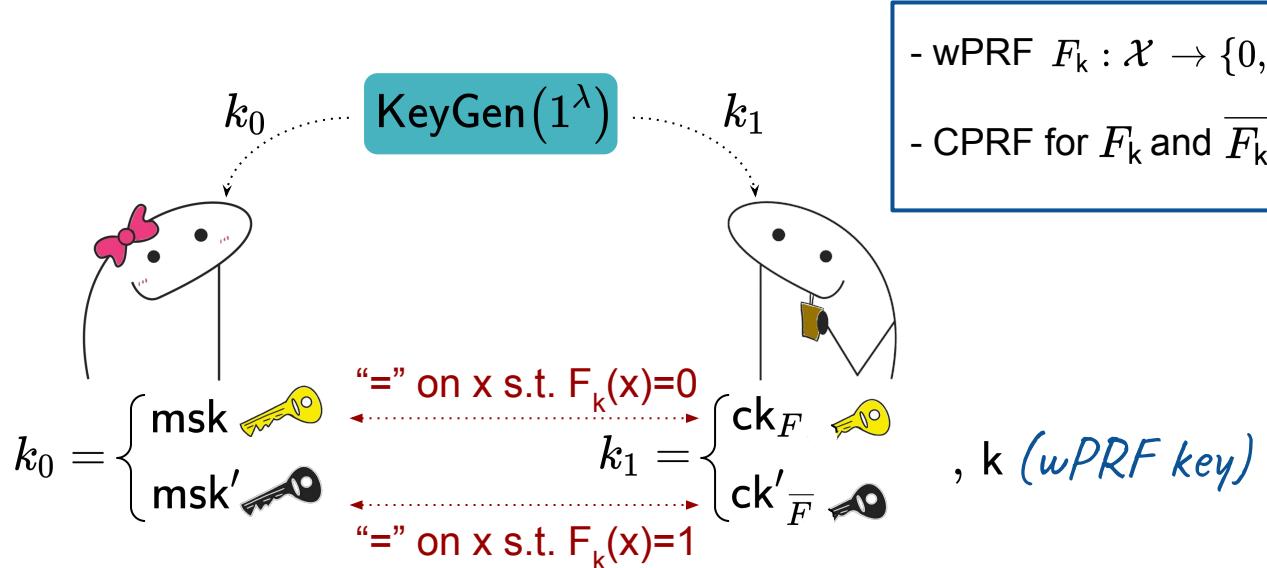
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]

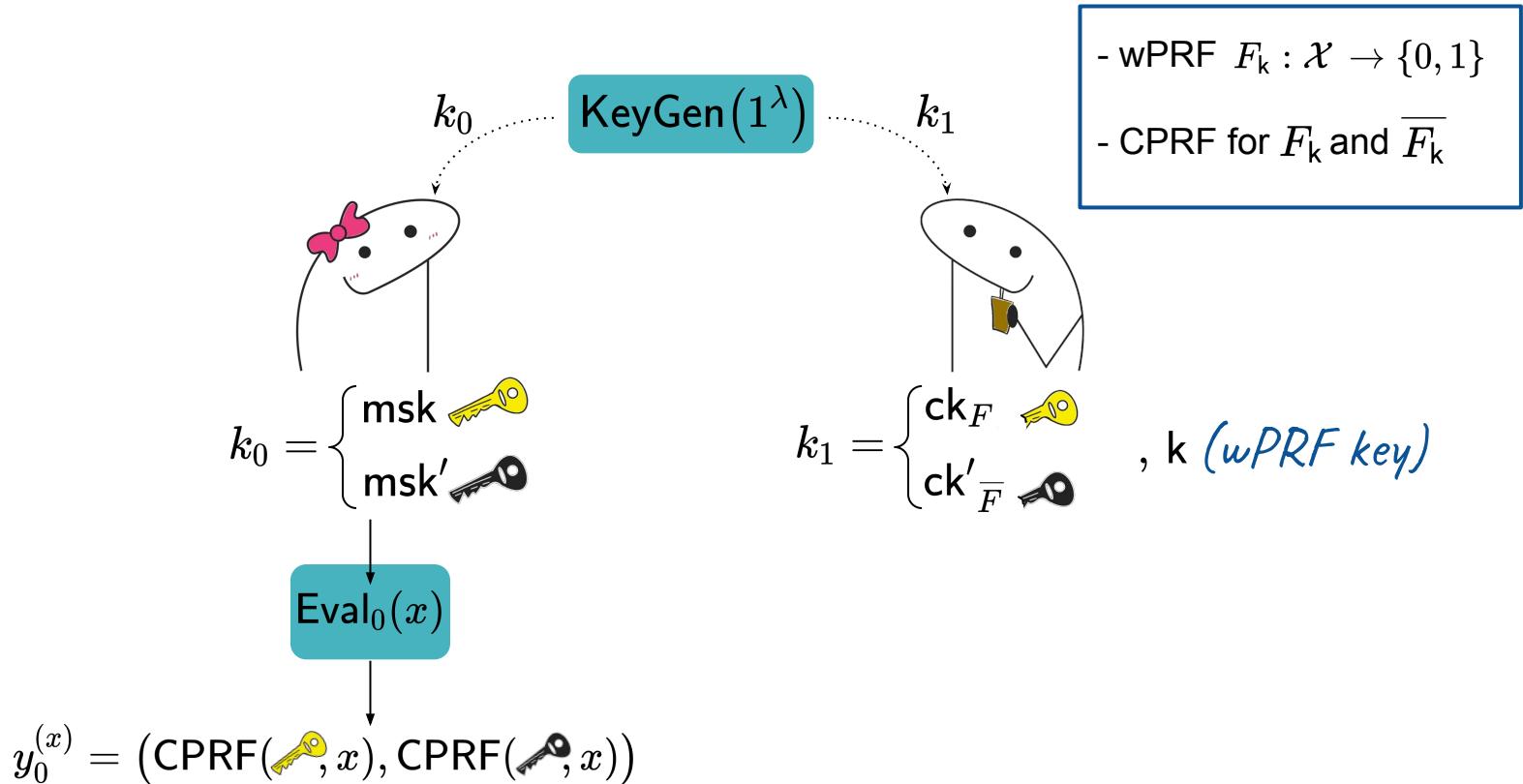


PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]

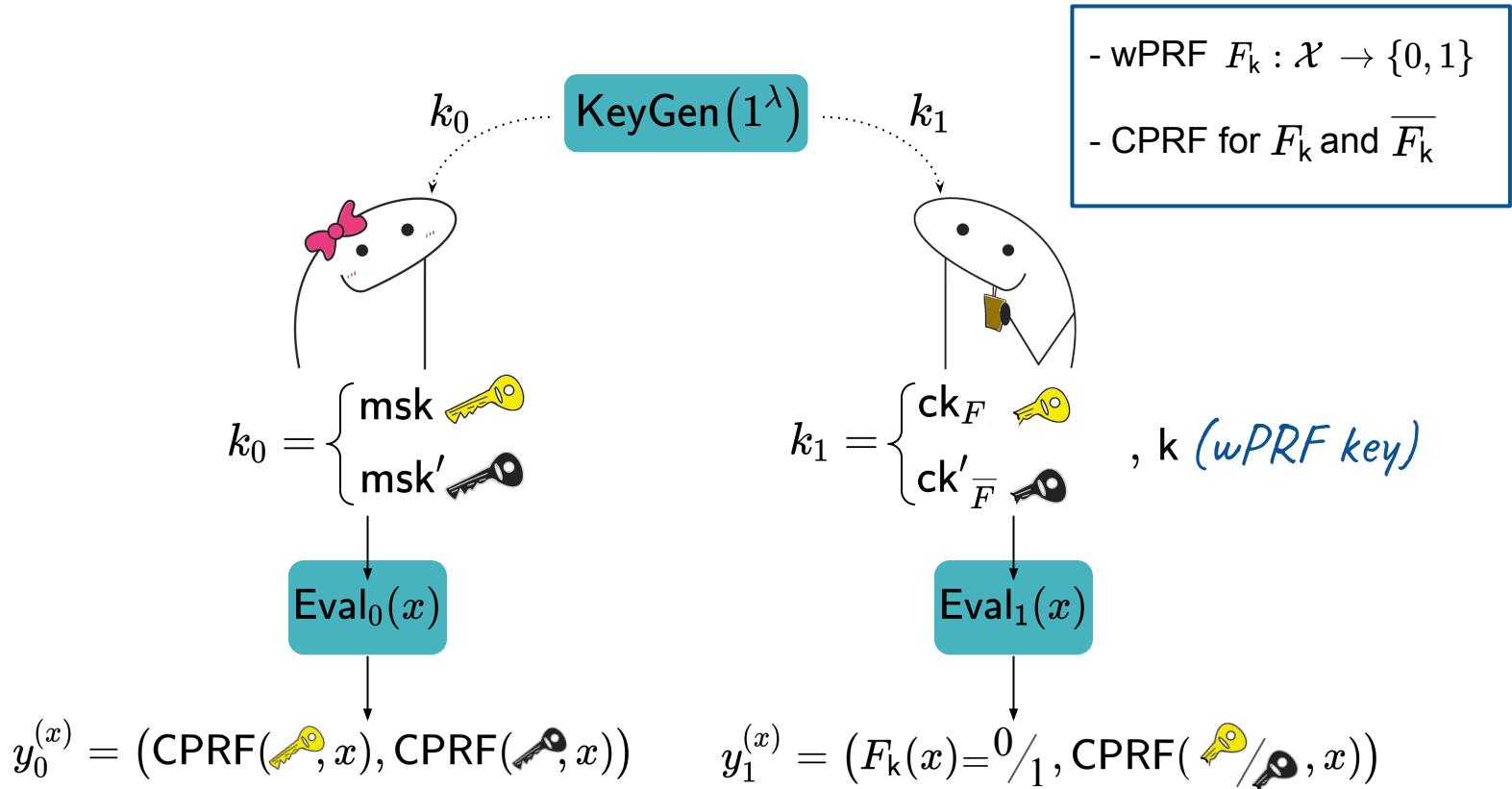


PCF for OT from Pseudorandomly Constrained PRFs [BCMPR24]



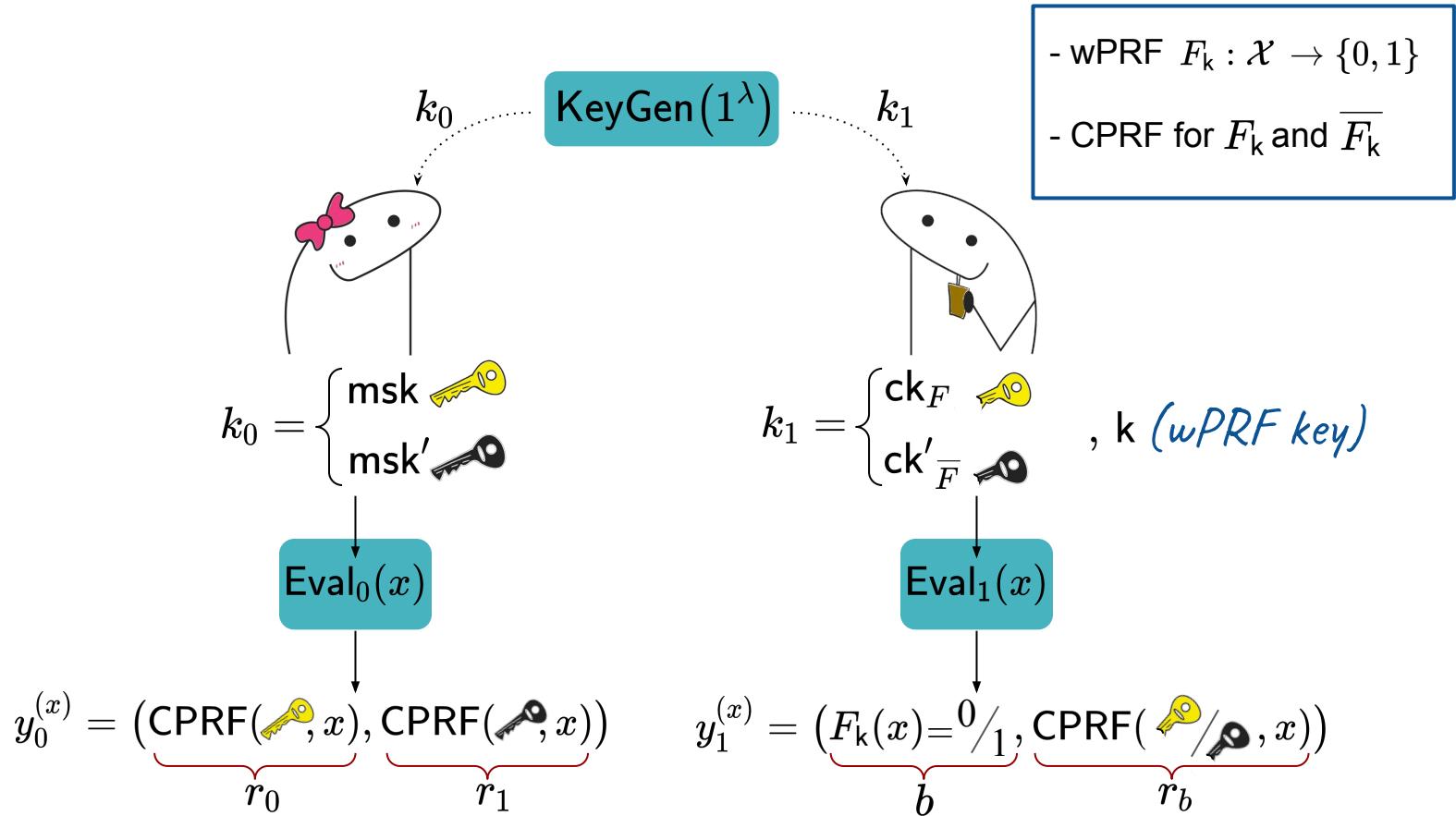
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]



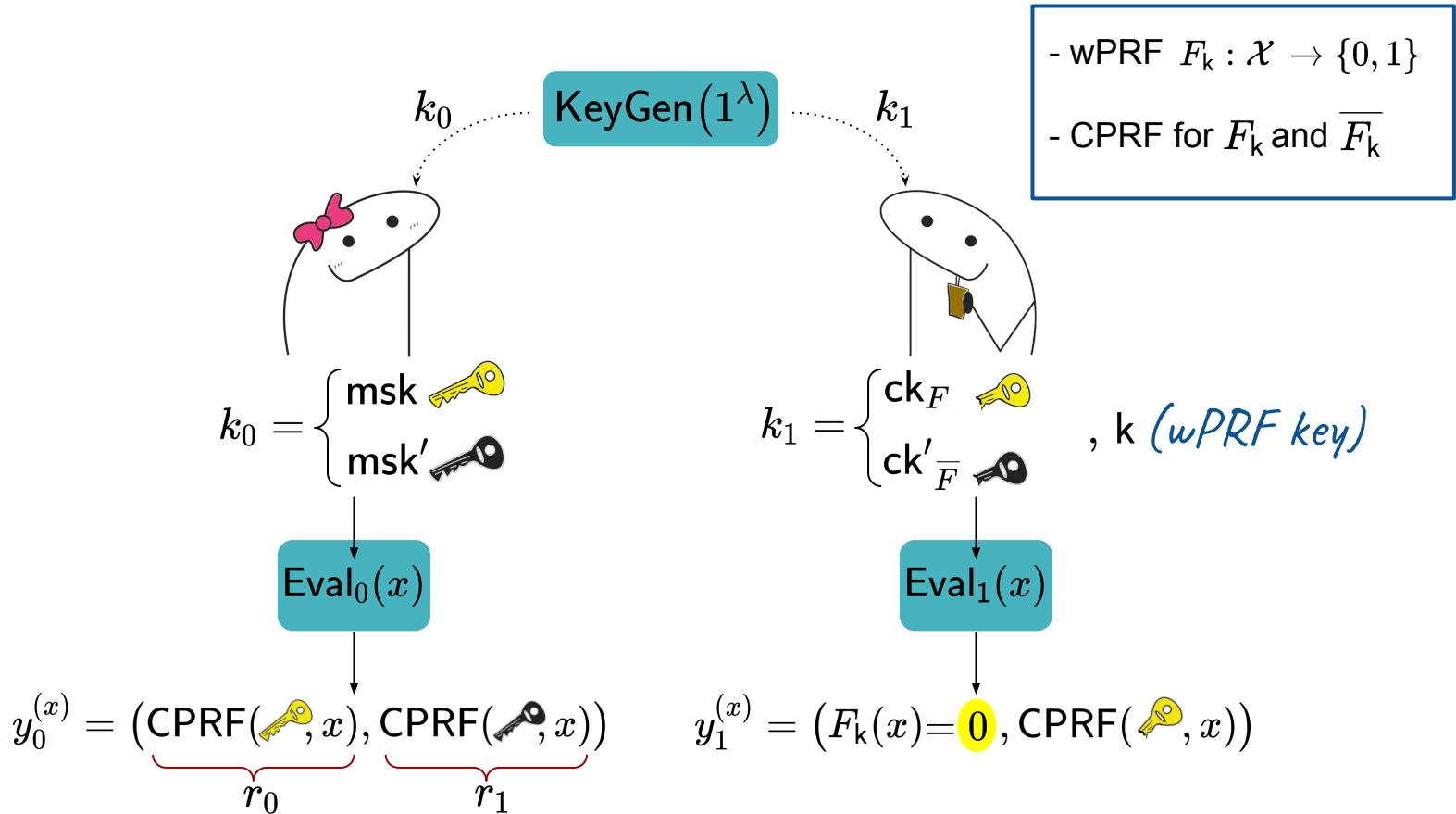
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]



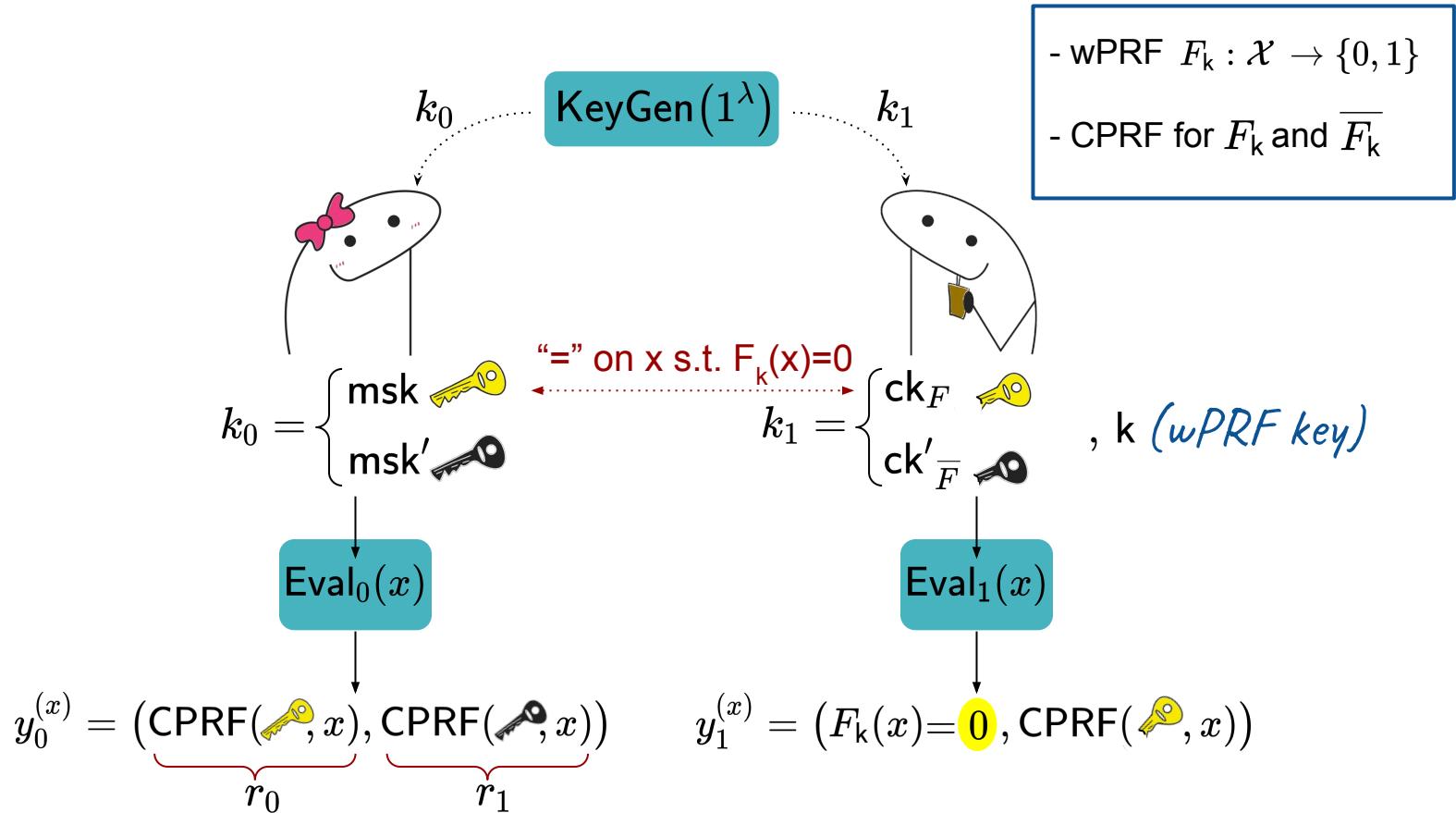
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]



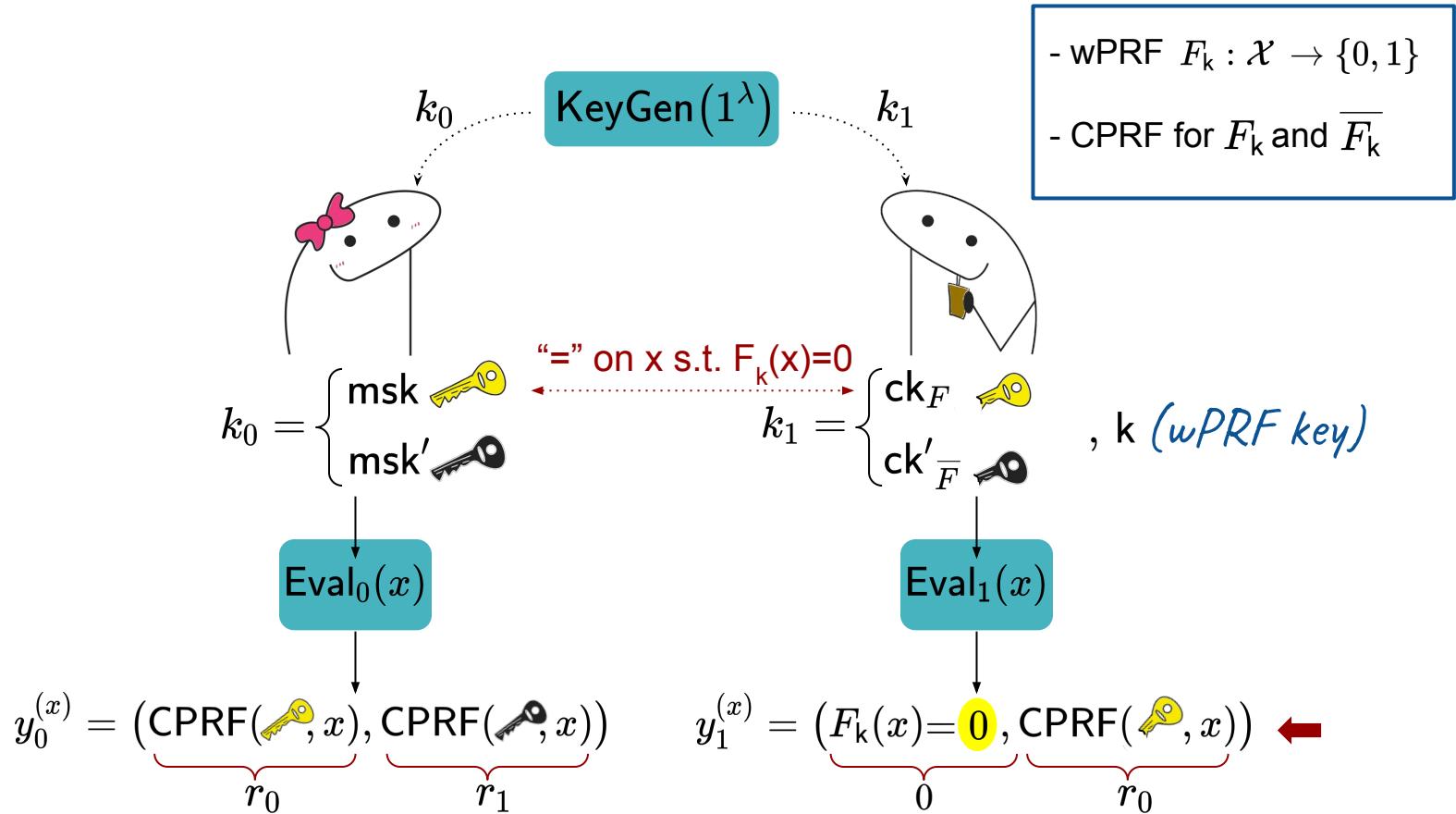
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]



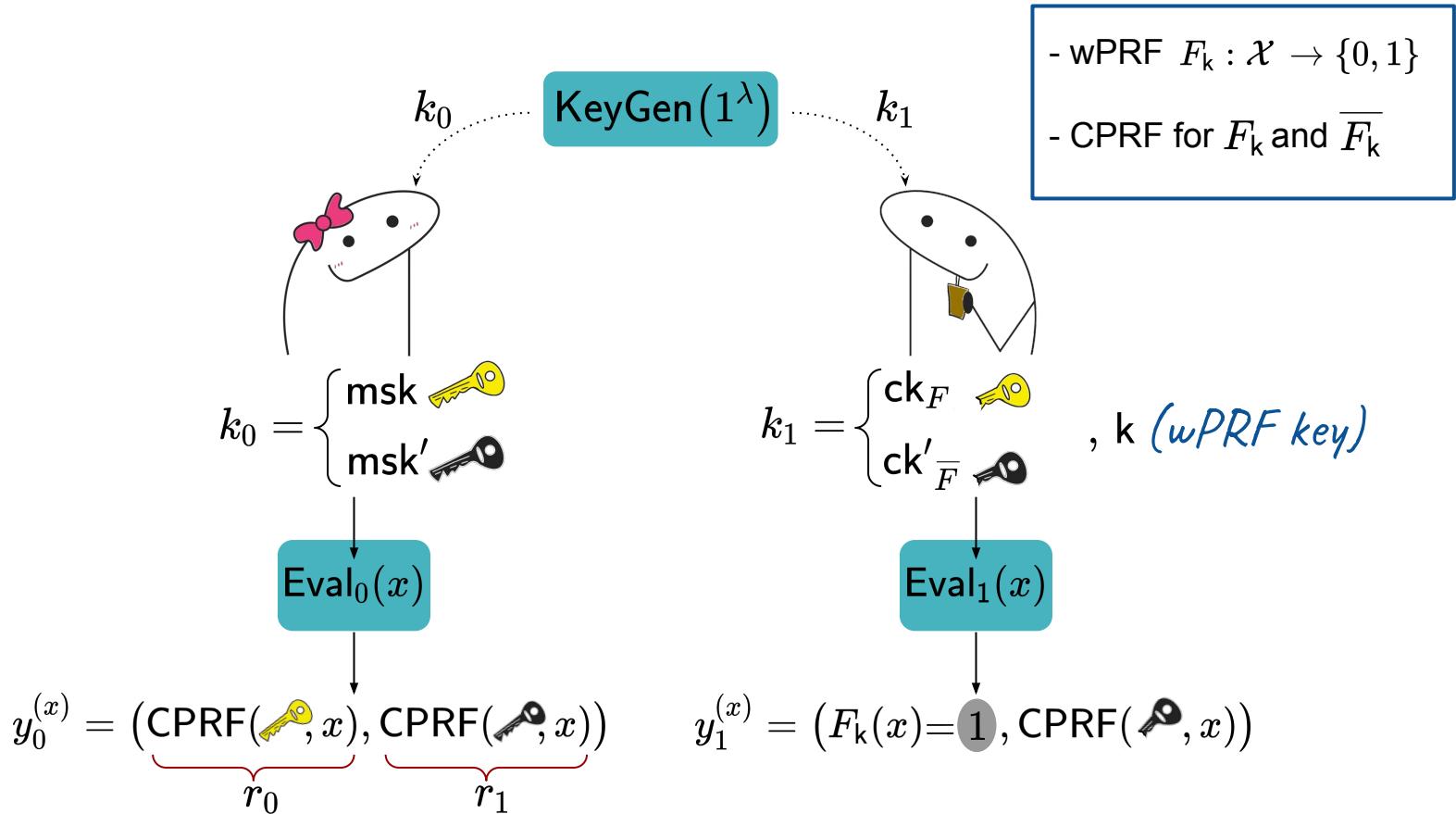
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]



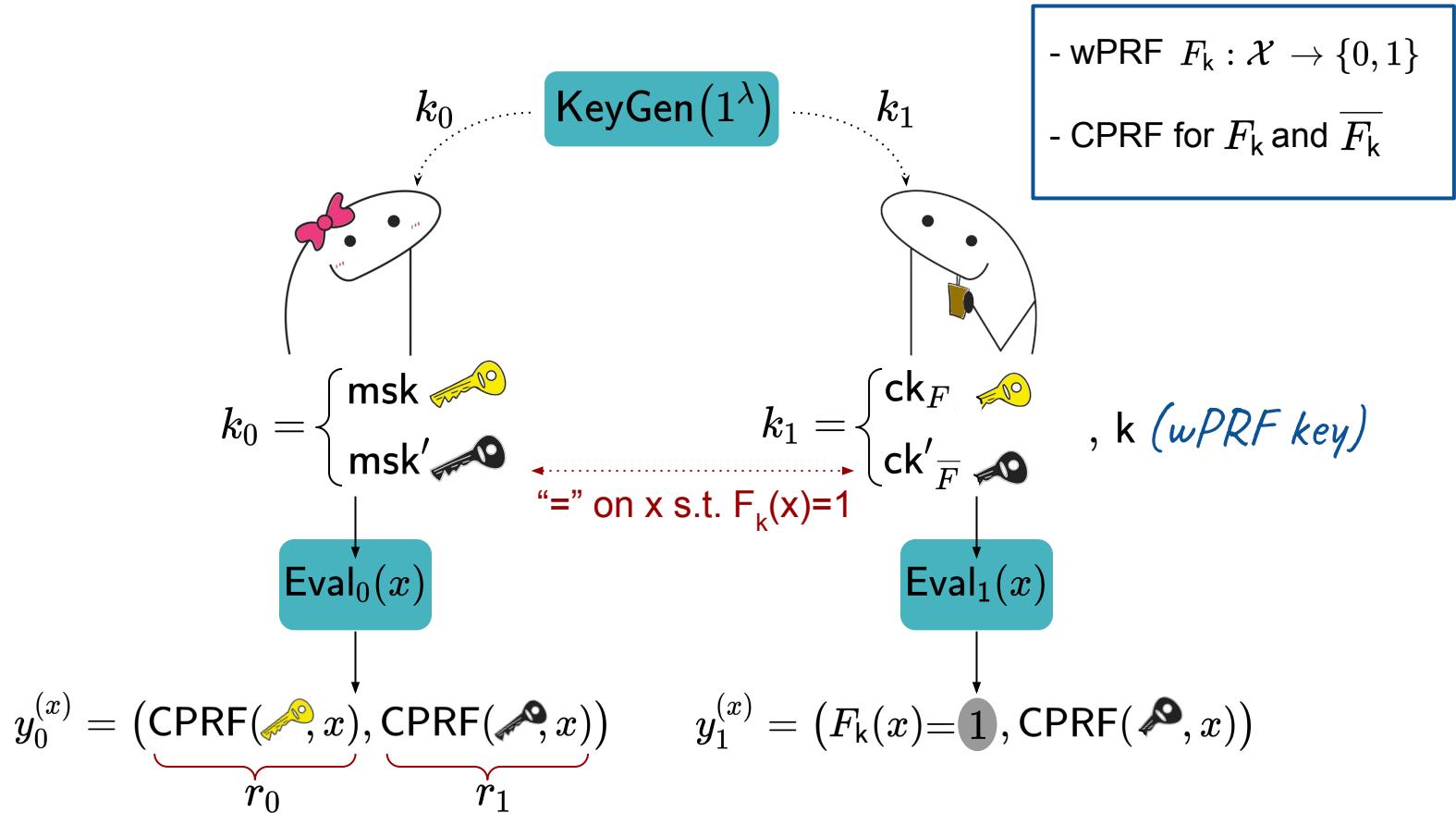
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]



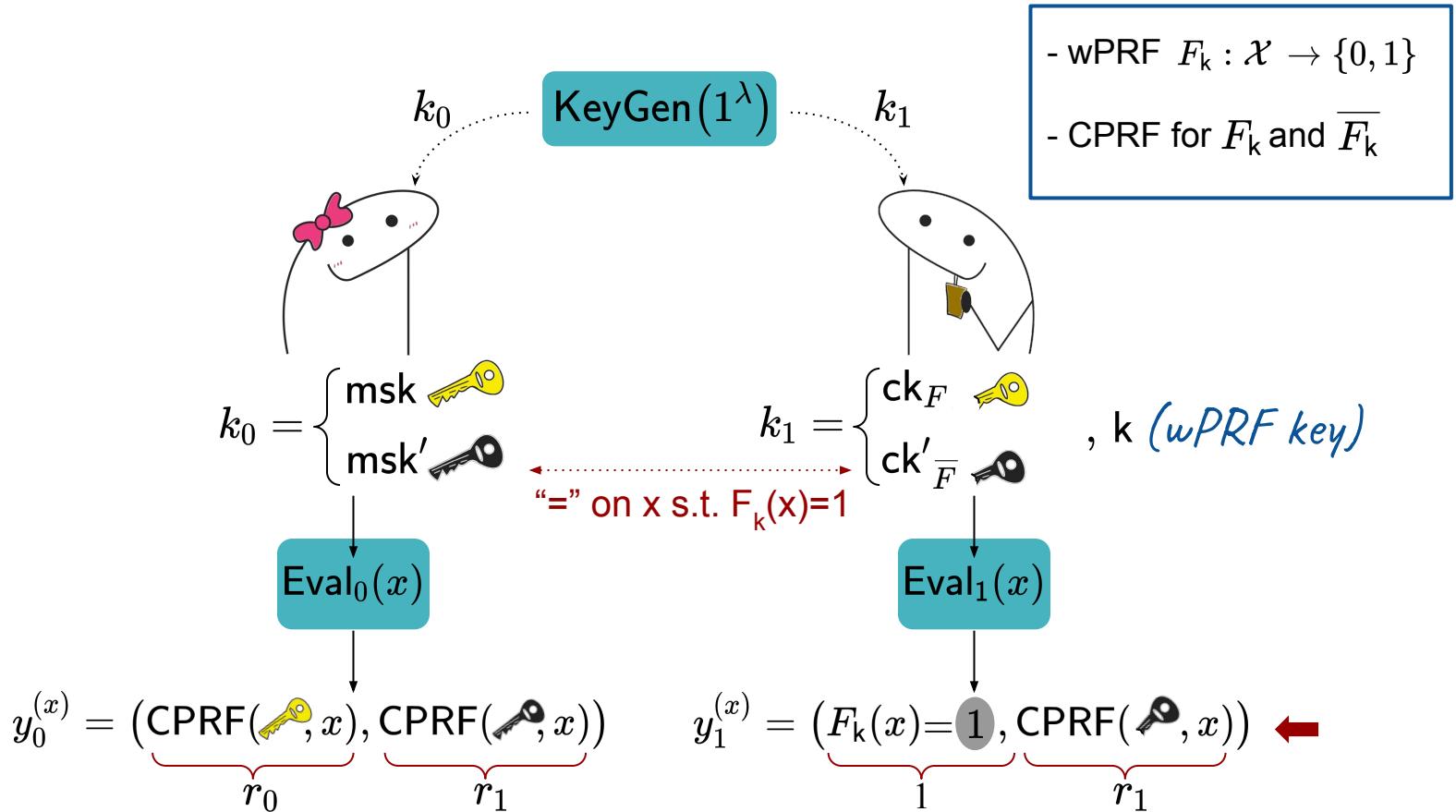
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]



PCF for OT from Pseudorandomly Constrained PRFs

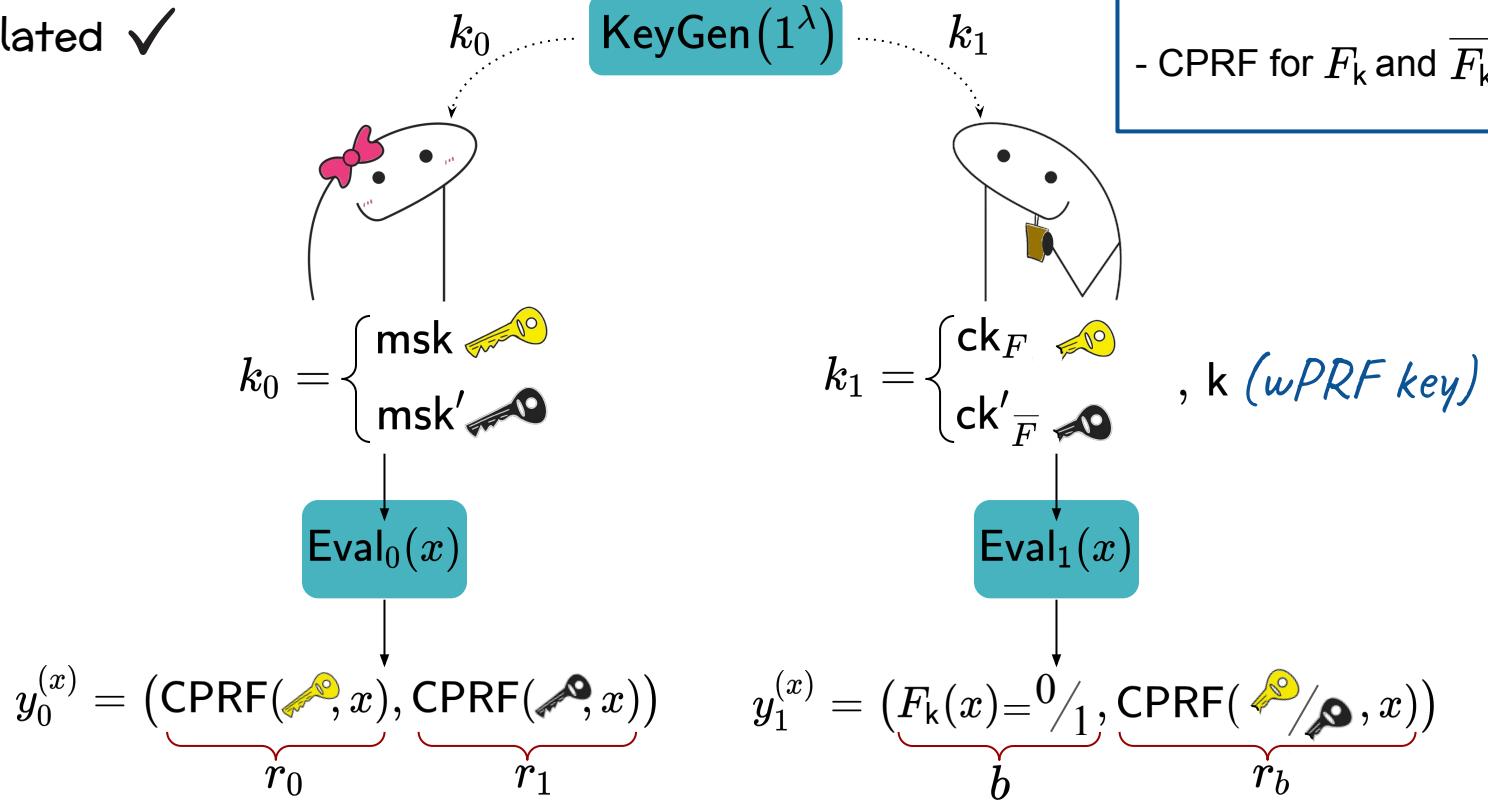
[BCMPR24]



PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]

OT-correlated ✓



- wPRF $F_k : \mathcal{X} \rightarrow \{0, 1\}$

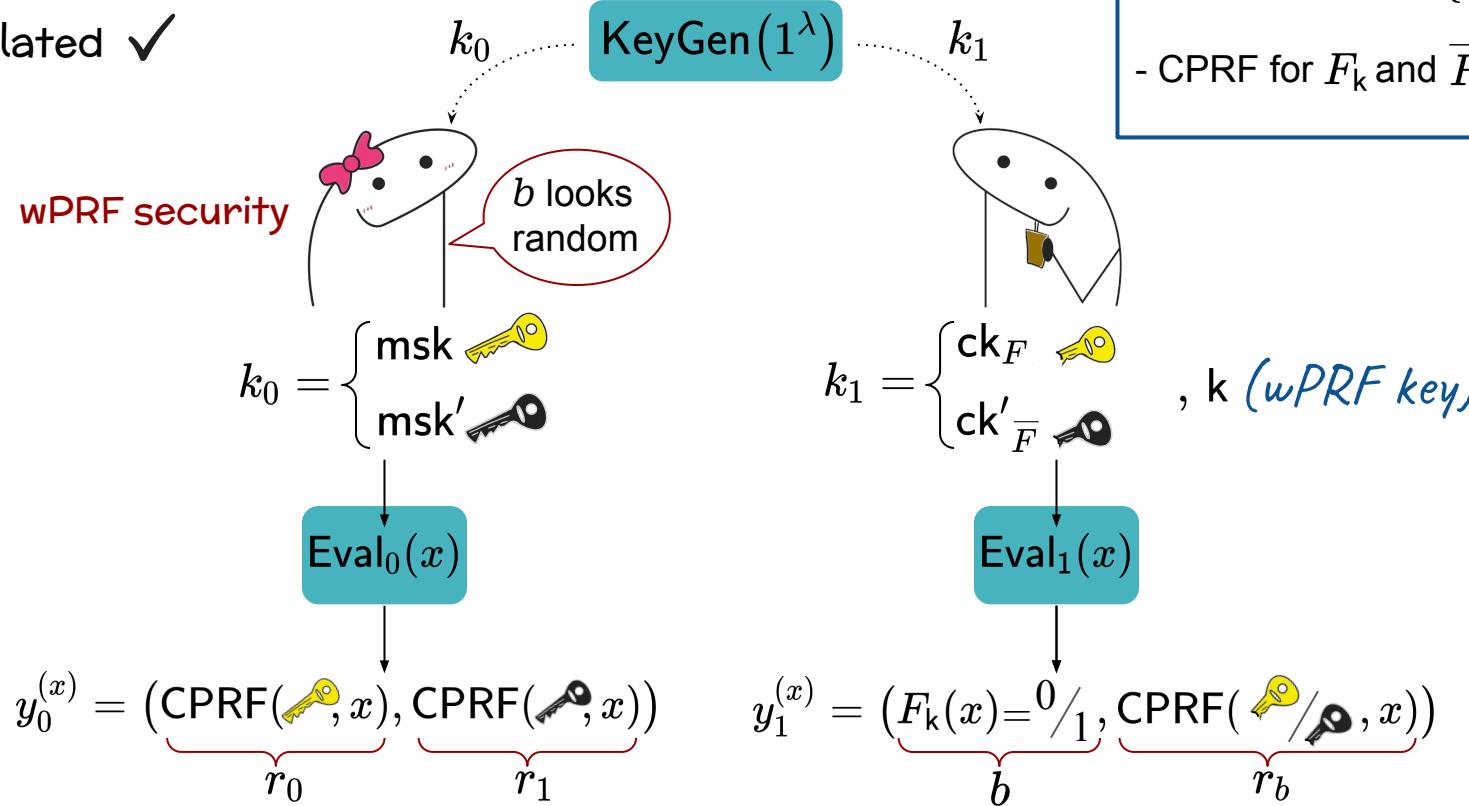
- CPRF for F_k and \overline{F}_k

PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]

OT-correlated ✓

wPRF security



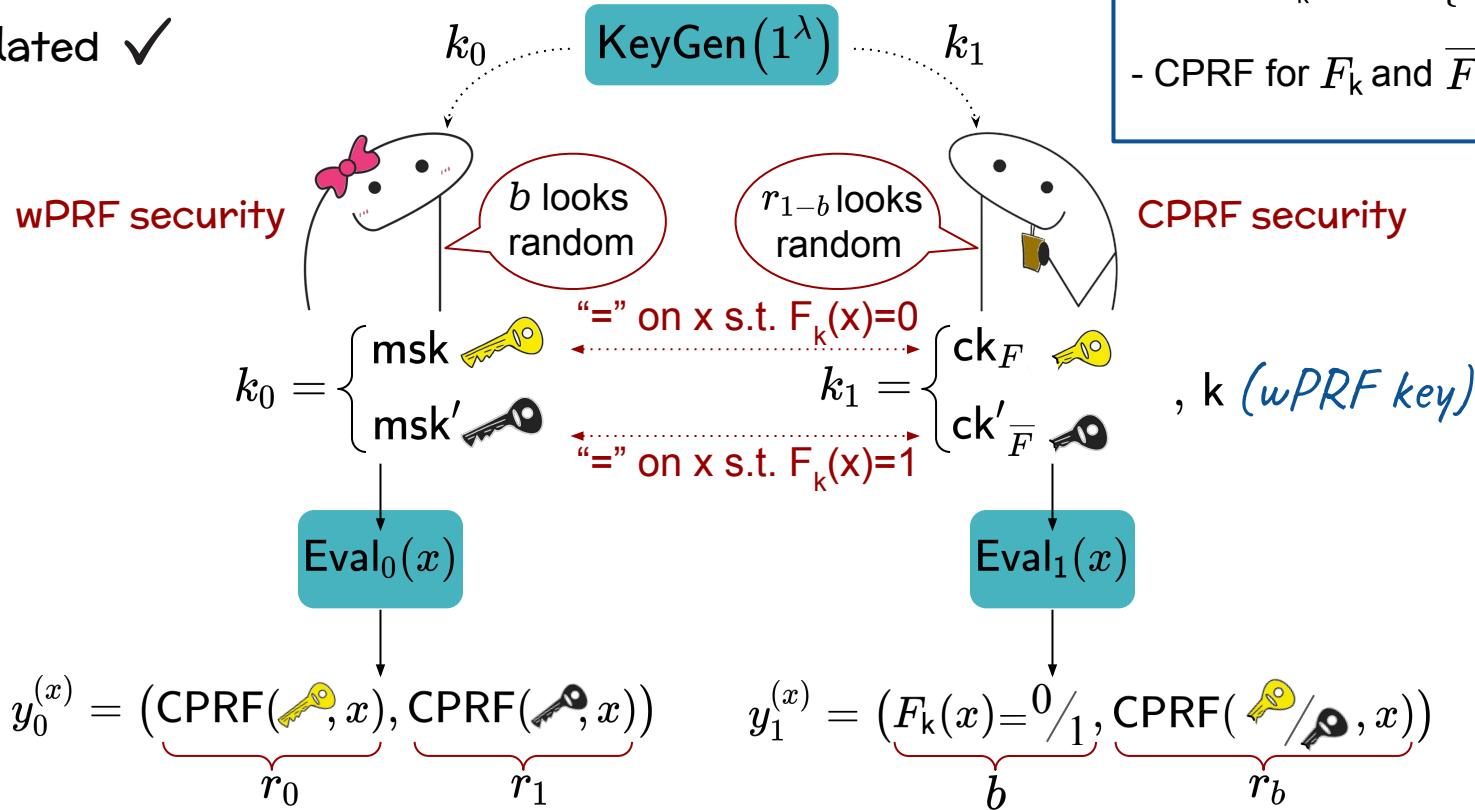
- wPRF $F_k : \mathcal{X} \rightarrow \{0, 1\}$

- CPRF for F_k and $\overline{F_k}$

PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]

OT-correlated ✓



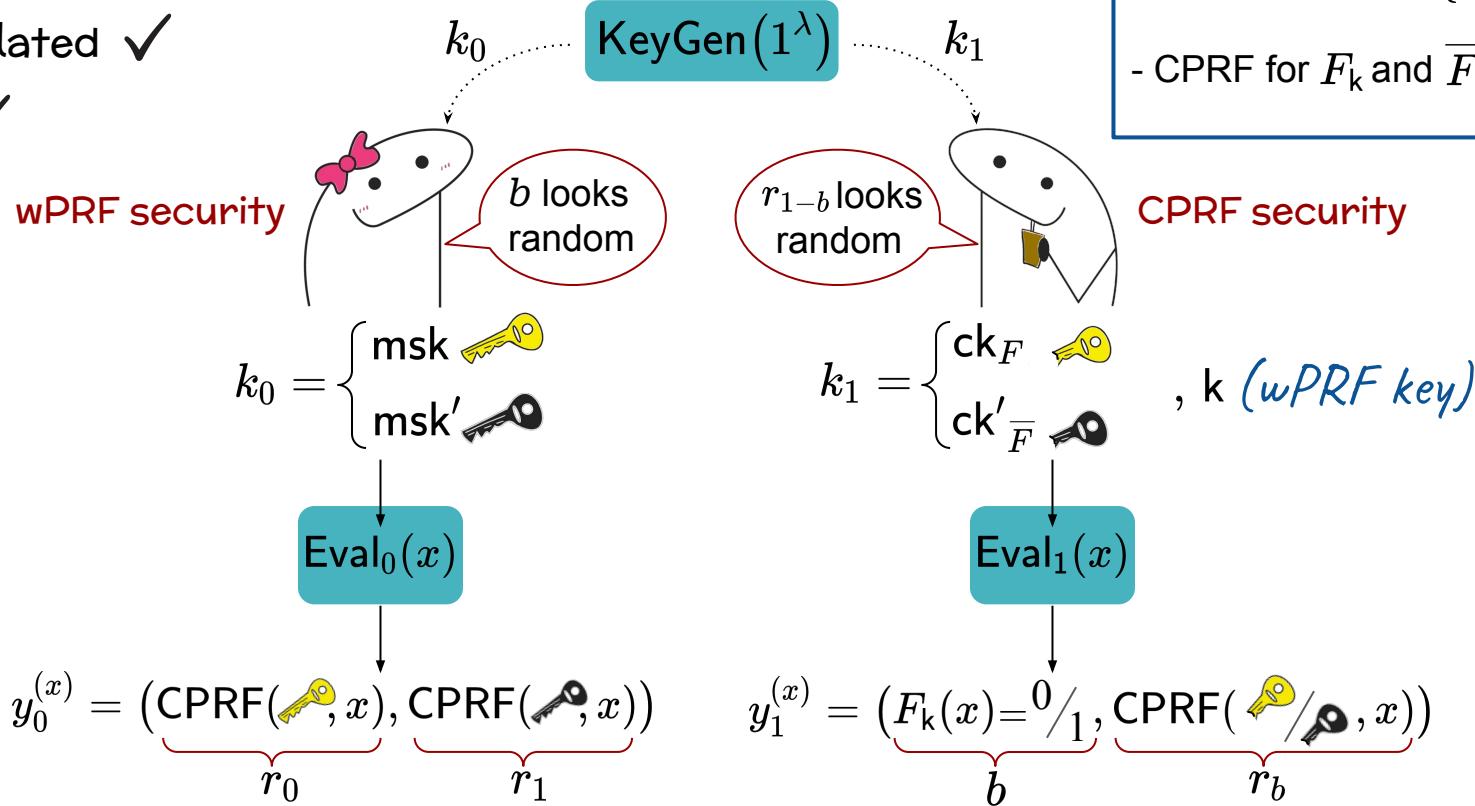
- wPRF $F_k : \mathcal{X} \rightarrow \{0, 1\}$
- CPRF for F_k and \overline{F}_k

PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]

OT-correlated ✓

Secure ✓



- wPRF $F_k : \mathcal{X} \rightarrow \{0, 1\}$

- CPRF for F_k and \bar{F}_k

CPRF security

, k (wPRF key)

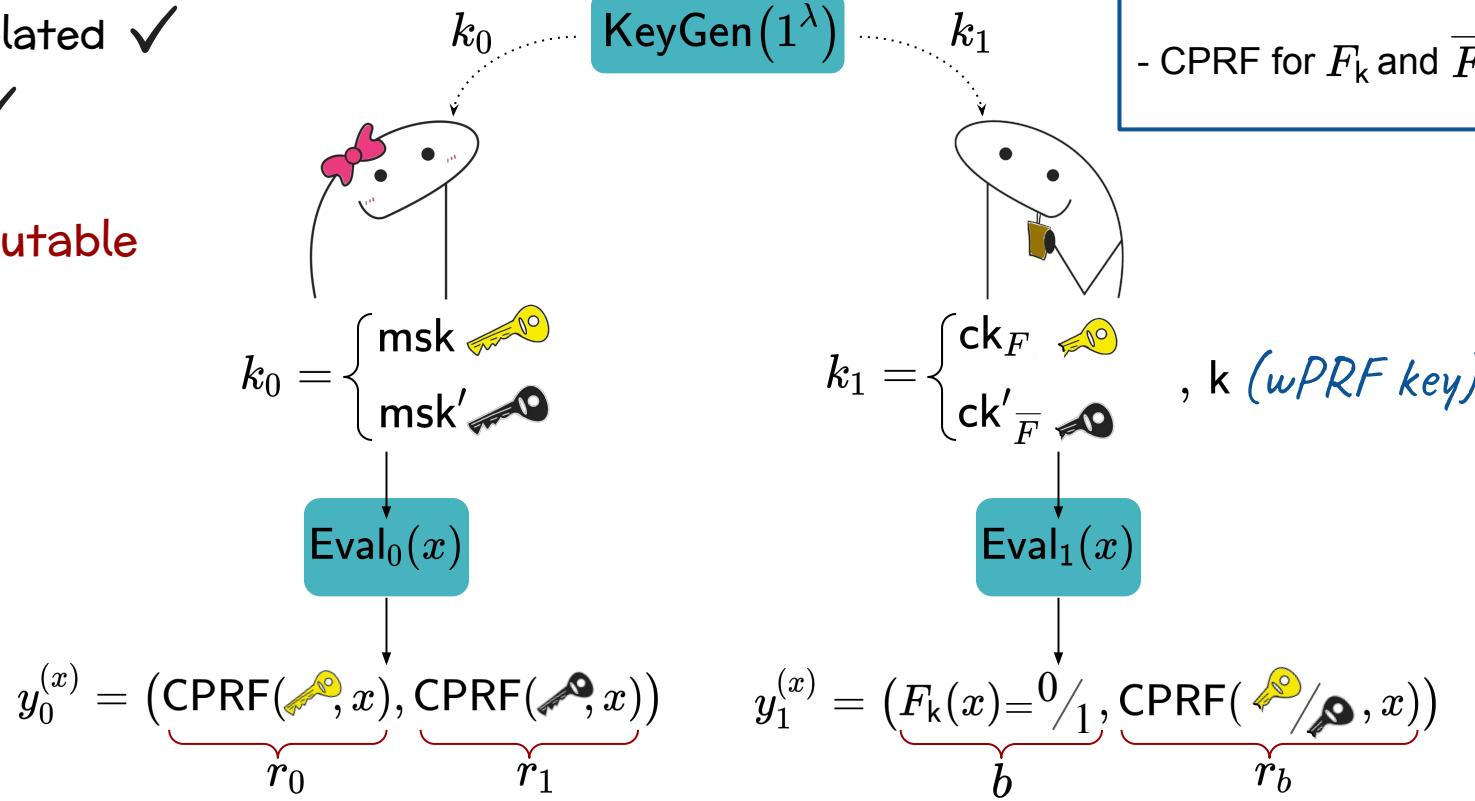
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]

OT-correlated ✓

Secure ✓

Precomputable



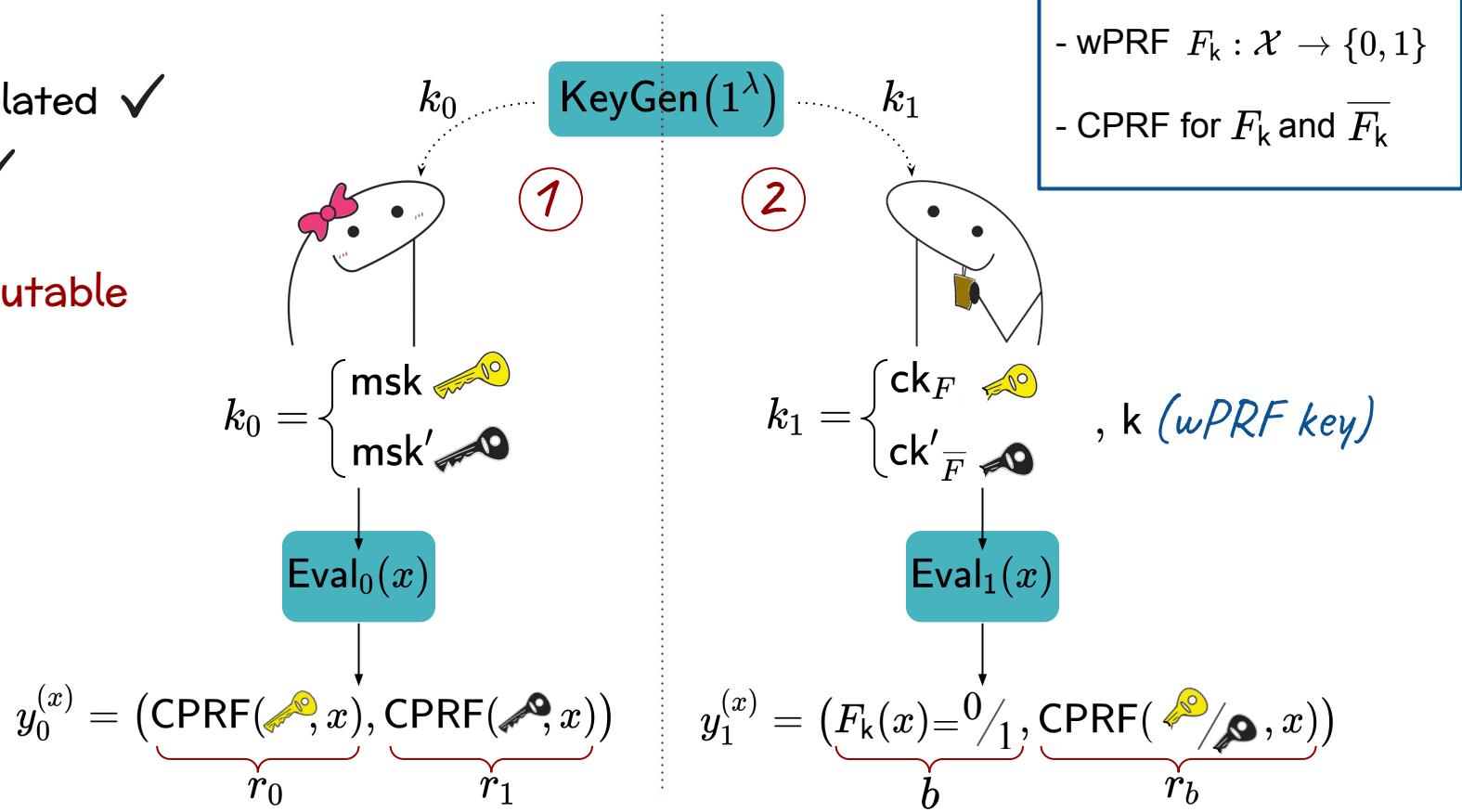
PCF for OT from Pseudorandomly Constrained PRFs

[BCMPR24]

OT-correlated ✓

Secure ✓

Precomputable



Contributions

Efficient Public-Key PCF for OT Correlations from Lattices

In this talk

Contributions

Efficient Public-Key PCF for OT Correlations from Lattices

In this talk

A PRF
from
Ring LWE

PRFs from Ring LWE

(Ring R_q)

- **Master Secret Key :**

$$\text{msk} := \left((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, s, a \xleftarrow{\$} R_q \right)$$

PRFs from Ring LWE

$$P : \{0, 1\}^n \times R_q^n \rightarrow R_q$$

(Ring R_q)

- **Master Secret Key :**

$$\text{msk} := \left((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, s, a \xleftarrow{\$} R_q \right)$$

binary

- **Evaluation on** $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}) \rfloor_2$$

PRFs from Ring LWE

$$P : \{0, 1\}^n \times R_q^n \rightarrow R_q$$

(Ring R_q)

- **Master Secret Key :**

$$\text{msk} := \left((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, s, a \xleftarrow{\$} R_q \right)$$

binary

- **Evaluation on** $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}) \rfloor_2 \quad (Y \in R_q : \lfloor Y \rfloor_2 = \lfloor Y \cdot (2/q) \rfloor)$$

PRFs from Ring LWE

$P : \{0, 1\}^n \times R_q^n \rightarrow R_q$ (with range invertible in R_q)

(Ring R_q)

- Master Secret Key :

$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, s, a \xleftarrow{\$} R_q)$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}) \rfloor_2$

No-Evaluation Security

$as + e$ looks random

(Ring LWE)

PRFs from Ring LWE

$P : \{0, 1\}^n \times R_q^n \rightarrow R_q$ (with range invertible in R_q)

(Ring R_q)

- Master Secret Key :

$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, s, a \xleftarrow{\$} R_q)$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\text{msk}}(\vec{x}) := \text{RO}(\lfloor as \cdot P(\vec{x}, \vec{k}) \rfloor_2)$

No-Evaluation Security

$as + e$ looks random

(Ring LWE)

Full security via Random Oracle

A Constrained PRF from Secret-Power Ring LWE

Constrained PRFs from Secret-Power Ring LWE

(Ring R_q)

- Master Secret Key :

$$\text{msk} := \left((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \underbrace{s}_{\text{invertible}}, a \xleftarrow{\$} R_q \right)$$

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\mathsf{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\mathsf{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\mathsf{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\mathsf{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\mathsf{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\mathsf{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

$$\text{Let } \vec{\ell} = \vec{k} - s \cdot \vec{z}$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$
binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

➡ $as \cdot P(\vec{x}, \vec{k}/s) = as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z})$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, s, a \xleftarrow{\$} R_q)$
binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$

$$P(\vec{x}, Y) = \sum_{i=0}^t p_i Y^i$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\rightarrow as \cdot P(\vec{x}, \vec{k}/s) = as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z})$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$
binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$

$$P(\vec{x}, Y) = \sum_{i=0}^t p_i Y^i$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\begin{aligned} \rightarrow as \cdot P(\vec{x}, \vec{k}/s) &= as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z}) \\ &= as \cdot \sum_{i=0}^t p_i (\vec{\ell}/s + \vec{z})^i \end{aligned}$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$
binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$

$$P(\vec{x}, Y) = \sum_{i=0}^t p_i Y^i$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\begin{aligned} \rightarrow as \cdot P(\vec{x}, \vec{k}/s) &= as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z}) \\ &= as \cdot \sum_{i=0}^t p_i (\vec{\ell}/s + \vec{z})^i \\ &= as \cdot P(\vec{x}, \vec{z}) + as \cdot \frac{1}{s} (\dots) \end{aligned}$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$
binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$

$$P(\vec{x}, Y) = \sum_{i=0}^t p_i Y^i$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\begin{aligned} \rightarrow as \cdot P(\vec{x}, \vec{k}/s) &= as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z}) \\ &= as \cdot P(\vec{x}, \vec{z}) + as \cdot \frac{1}{s} Q(\vec{x}, \vec{z}, 1/s, \vec{\ell}) \end{aligned}$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$
binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$

$$P(\vec{x}, Y) = \sum_{i=0}^t p_i Y^i$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\begin{aligned} \rightarrow as \cdot P(\vec{x}, \vec{k}/s) &= as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z}) \\ &= as \cdot P(\vec{x}, \vec{z}) + a \cdot Q(\vec{x}, \vec{z}, 1/s, \vec{\ell}) \end{aligned}$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\mathbf{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\mathbf{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\mathbf{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

$$P(\vec{x}, Y) = \sum_{i=0}^t p_i Y^i$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\begin{aligned} \rightarrow as \cdot P(\vec{x}, \vec{k}/s) &= as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z}) \\ &= as \cdot P(\vec{x}, \vec{z}) + a \cdot Q(\vec{x}, \vec{z}, 1/s, \vec{\ell}) \\ &= as \cdot P(\vec{x}, \vec{z}) + \sum_{i=0}^t q_i \cdot a \left(\frac{1}{s} \right)^i \end{aligned}$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

$$P(\vec{x}, Y) = \sum_{i=0}^t p_i Y^i$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\rightarrow as \cdot P(\vec{x}, \vec{k}/s) = as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z})$$

$$= as \cdot P(\vec{x}, \vec{z}) + a \cdot Q(\vec{x}, \vec{z}, 1/s, \vec{\ell})$$

$$= as \cdot P(\vec{x}, \vec{z}) + \sum_{i=0}^t q_i \cdot a \left(\frac{1}{s} \right)^i$$

If $P(\vec{x}, \vec{z}) = 0$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

is a polynomial
in $1/s$
(rounded mod 2)
when $P(\vec{x}, \vec{z}) = 0$

$$P(\vec{x}, Y) = \sum_{i=0}^t p_i Y^i$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\rightarrow as \cdot P(\vec{x}, \vec{k}/s) = as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z})$$

$$= as \cdot P(\vec{x}, \vec{z}) + a \cdot Q(\vec{x}, \vec{z}, 1/s, \vec{\ell})$$

$$= as \cdot P(\vec{x}, \vec{z}) + \sum_{i=0}^t q_i \cdot a \left(\frac{1}{s} \right)^i$$

If $P(\vec{x}, \vec{z}) = 0$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, s, a \xleftarrow{\$} R_q)$
binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$

is a polynomial
in $1/s$
(rounded mod 2)
when $P(\vec{x}, \vec{z}) = 0$

$$P(\vec{x}, Y) = \sum_{i=0}^t p_i Y^i$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$?

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\rightarrow as \cdot P(\vec{x}, \vec{k}/s) = as \cdot P(\vec{x}, \vec{\ell}/s + \vec{z})$$

$$= as \cdot P(\vec{x}, \vec{z}) + a \cdot Q(\vec{x}, \vec{z}, 1/s, \vec{\ell})$$

$$= as \cdot P(\vec{x}, \vec{z}) + \sum_{i=0}^t q_i \cdot a \left(\frac{1}{s} \right)^i$$

If $P(\vec{x}, \vec{z}) = 0$

depends on $\vec{x}, \vec{z}, \vec{\ell}$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\mathsf{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\mathsf{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\mathsf{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$:

$$\text{Let } \vec{\ell} = \vec{k} - s \cdot \vec{z}$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\mathsf{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\mathsf{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{} :$

$$F_{\mathsf{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$:

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\mathsf{ck}_{\vec{z}} := \left(\vec{\ell}, \left(\mathcal{A}_i = a \cdot (1/s)^i + e_i \right)_{i \in [0, t-1]}, \vec{z} \right)$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\mathbf{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\mathbf{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{} :$

$$F_{\mathbf{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$:

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\mathbf{ck}_{\vec{z}} := \left(\vec{\ell}, \left(\mathcal{A}_i = a \cdot (1/s)^i + e_i \right)_{i \in [0, t-1]}, \vec{z} \right)$$

- Constrained Evaluation :

- 1 Find c_i 's such that

$$P(\vec{x}, \vec{\ell}/S + \vec{z}) = P(\vec{x}, \vec{z}) + \sum_{i=1}^t c_i (1/S)^i$$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\mathbf{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$\mathbf{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$
binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$F_{\mathbf{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$:

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$\mathbf{ck}_{\vec{z}} := \left(\vec{\ell}, \left(\mathcal{A}_i = a \cdot (1/s)^i + e_i \right)_{i \in [0, t-1]}, \vec{z} \right)$

- Constrained Evaluation :

- 1 Find c_i 's such that

$P(\vec{x}, \vec{\ell}/S + \vec{z}) = P(\vec{x}, \vec{z}) + \sum_{i=1}^t c_i (1/S)^i$ *symbolic variable*

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{ }} :$

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$:

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\text{ck}_{\vec{z}} := \left(\vec{\ell}, \left(\mathcal{A}_i = a \cdot (1/s)^i + e_i \right)_{i \in [0, t-1]}, \vec{z} \right)$$

- Constrained Evaluation :

- 1 Find c_i 's such that *symbolic variable*

$$P(\vec{x}, \vec{\ell}/S + \vec{z}) = P(\vec{x}, \vec{z}) + \sum_{i=1}^t c_i (1/S)^i$$

- 2 Output $\lfloor \sum_{i=0}^{t-1} c_i \cdot \mathcal{A}_i \rfloor_2$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \mathbf{s}, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{Evaluation on } \vec{x}}$:

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

Equal when
 $P(\vec{x}, \vec{z})=0$

- Constrained Key for $\vec{z} \in \{0, 1\}^n$

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\text{ck}_{\vec{z}} := \left(\vec{\ell}, \left(\mathcal{A}_i = a \cdot (1/s)^i + e_i \right)_{i \in [0, t-1]}, \vec{z} \right)$$

- Constrained Evaluation :

- Find c_i 's such that *symbolic variable*

$$P(\vec{x}, \vec{\ell}/s + \vec{z}) = P(\vec{x}, \vec{z}) + \sum_{i=1}^t c_i (1/s)^i$$

- Output $\lfloor \sum_{i=0}^{t-1} c_i \cdot \mathcal{A}_i \rfloor_2$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, s, a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{ }} :$

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

Equal when
 $P(\vec{x}, \vec{z})=0$
& error small

- Constrained Key for $\vec{z} \in \{0, 1\}^n$:

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\text{ck}_{\vec{z}} := \left(\vec{\ell}, \left(\mathcal{A}_i = a \cdot (1/s)^i + e_i \right)_{i \in [0, t-1]}, \vec{z} \right)$$

- Constrained Evaluation :

- 1 Find c_i 's such that *symbolic variable*

$$P(\vec{x}, \vec{\ell}/s + \vec{z}) = P(\vec{x}, \vec{z}) + \sum_{i=1}^t c_i (1/s)^i$$

- 2 Output $\lfloor \sum_{i=0}^{t-1} c_i \cdot \mathcal{A}_i \rfloor_2$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \underbrace{s \xleftarrow{\$} R_q}_{\text{small}} \text{, } a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

Equal when
 $P(\vec{x}, \vec{z}) = 0$
& error small

- Constrained Key for $\vec{z} \in \{0, 1\}^n$:

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$ small

$$\text{ck}_{\vec{z}} := \left(\vec{\ell}, \left(\mathcal{A}_i = a \cdot (1/s)^i + e_i \right)_{i \in [0, t-1]}, \vec{z} \right)$$

- Constrained Evaluation :

- Find c_i 's such that symbolic variable

$$P(\vec{x}, \vec{\ell}/S + \vec{z}) = P(\vec{x}, \vec{z}) + \sum_{i=1}^t c_i (1/S)^i$$

- Output $\lfloor \sum_{i=0}^{t-1} c_i \cdot \mathcal{A}_i \rfloor_2$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \underbrace{s \xleftarrow{\$} R_q}_{\text{small}} \text{, } a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

No-Evaluation Security

$as + e$ looks random given $(a \cdot (1/s)^i + e_i)_{i=0}^{t-1}$ (Secret-Power Ring LWE)

- Constrained Key for $\vec{z} \in \{0, 1\}^n$:

Let $\vec{\ell} = \vec{k} - s \cdot \vec{z}$

$$\text{ck}_{\vec{z}} := \left(\vec{\ell}, \left(\mathcal{A}_i = a \cdot (1/s)^i + e_i \right)_{i \in [0, t-1]}, \vec{z} \right)$$

- Constrained Evaluation :

- Find c_i 's such that

$$P(\vec{x}, \vec{\ell}/S + \vec{z}) = P(\vec{x}, \vec{z}) + \sum_{i=1}^t c_i (1/S)^i$$

- Output $\lfloor \sum_{i=0}^{t-1} c_i \cdot \mathcal{A}_i \rfloor_2$

Constrained PRFs from Secret-Power Ring LWE

Constraint: $\text{ck}_{\vec{z}}$ can evaluate on all \vec{x} iff $P(\vec{x}, \vec{z}) = 0$ $(P : \{0, 1\}^n \times R_q^n \rightarrow R_q)$

(Ring R_q)

- Master Secret Key :

$$\text{msk} := ((k_1, \dots, k_n) \xleftarrow{\$} R_q^n, \underbrace{s \xleftarrow{\$} R_q}_{\text{small}} \text{, } a \xleftarrow{\$} R_q)$$

binary

- Evaluation on $\vec{x} = \overbrace{x_1, x_2, \dots, x_n}^{\text{binary}}$:

$$F_{\text{msk}}(\vec{x}) := \lfloor as \cdot P(\vec{x}, \vec{k}/s) \rfloor_2$$

No-Evaluation Security

$as + e$ looks random given $(a \cdot (1/s)^i + e_i)_{i=0}^{t-1}$ (Secret-Power Ring LWE)

- Constrained Key for $\vec{z} \in \{0, 1\}^n$:

$$\text{Let } \vec{\ell} = \vec{k} - s \cdot \vec{z}$$

$$\text{ck}_{\vec{z}} := \left(\vec{\ell}, \left(\mathcal{A}_i = a \cdot (1/s)^i + e_i \right)_{i \in [0, t-1]}, \vec{z} \right)$$

- Constrained Evaluation :

- Find c_i 's such that

$$P(\vec{x}, \vec{\ell}/S + \vec{z}) = P(\vec{x}, \vec{z}) + \sum_{i=1}^t c_i (1/S)^i$$

- Output $\lfloor \sum_{i=0}^{t-1} c_i \cdot \mathcal{A}_i \rfloor_2$

Full security via random oracle

So What?

Our $PK\text{-}PCF$ =
Our CPRF from secret-power RLWE
+ Goldreich-Applebaum-Raykov weak PRF ([Gol00, AR16])
+ public-key setup à la succinct HSS ([ARP24])

Work	Post-Quantum	OT Variant	Key-Size	OT/sec
[OSY21]	✗	OT	small	1
[BCMPR24]	✗	OT	small	30k
[CDDKS24]	✓	List OT	5.5 MB	1.2M
This Work	✓	OT	567 MB	540-1k
	✓	OT	200 MB	190-450k

All works use random oracles

Summary

Efficient Public-Key PCF for OT Correlations from Lattices

Thank You!

References

- [AR16] B. Applebaum and P. Raykov. Fast pseudorandom functions based on expander graphs.
- [ARS24] D. Abram, L. Roy, P. Scholl. Succinct Homomorphic Secret Sharing.
- [BCGIKS19] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom correlation generators: Silent OT extension and more.
- [BCGIKS20] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Correlated pseudorandom functions from variable-density LPN.
- [BCMPR24] D. Bui, G. Couteau, P. Meyer, A. Passelègue, M. Riahinia. Fast Public-Key Silent OT and More from Constrained Naor-Reingold.
- [BW13] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications.
- [GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
- [GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority.

References

- [Gol00] O. Goldreich. Candidate one-way functions based on expander graphs.
- [KPTZ13] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudorandom functions and applications.

GAR wPRF
as

a constraint

GAR weak PRF

$$\vec{z} \in \{0,1\}^n, \vec{x} \in \{0,1\}^{\kappa+\tau}$$

$$F(\vec{z}, \vec{x}) = \text{XOR}_\kappa\text{-MAJ}_\tau(\vec{z}[x_1], \dots, \vec{z}[x_{\kappa+\tau}]) \in \{0,1\}$$

where

$$\text{XOR}_\kappa\text{-MAJ}_\tau(b_1, \dots, b_{\kappa+\tau}) = \text{XOR}_\kappa(b_1, \dots, b_\kappa) \oplus \text{MAJ}(b_{\kappa+1}, \dots, b_{\kappa+\tau})$$

GAR weak PRF

$$\vec{z} \in \{0,1\}^n, \vec{x} \in \{0,1\}^{\kappa+\tau}$$

$$F(\vec{z}, \vec{x}) = \text{XOR}_\kappa\text{-MAJ}_\tau(\vec{z}[x_1], \dots, \vec{z}[x_{\kappa+\tau}]) \in \{0, 1\}$$

where

$$\text{XOR}_\kappa\text{-MAJ}_\tau(b_1, \dots, b_{\kappa+\tau}) = \text{XOR}_\kappa(b_1, \dots, b_\kappa) \oplus \text{MAJ}(b_{\kappa+1}, \dots, b_{\kappa+\tau})$$

We find two polynomials P and \bar{P} over R_q such that

$$P_{\kappa, \tau}(\vec{x}, \vec{z}) = 0 \iff F(\vec{x}, \vec{z}) = 0$$

$$\bar{P}_{\kappa, \tau}(\vec{x}, \vec{z}) = 0 \iff F(\vec{x}, \vec{z}) = 1$$

Degree $O(\kappa+\tau)$