Wagner's Algorithm Provably Runs in Subexponential Time for SIS^{∞}

Léo Ducas 1,2 Lynn Engelberts 1,3 Johanna Loyer 4

¹CWI ²Leiden University ³QuSoft ⁴Inria Saclay

Context

- Shor's algorithm
- Emergence of quantum computers
- NIST calls for post-quantum cryptography standardization
 - ▶ Kyber, Dilithium, Falcon (lattices)
 - ► Sphincs+ (hash functions)
 - ► HQC (codes)

• Dilithium relies on the SIS^{∞} problem

Short Integer Solution in infinity norm $(SIS_{n,m,q,\beta}^{\infty})$

Let be $n, m, q \in \mathbb{N}$ and $\beta > 0$. Given a uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a **non-zero** vector $\mathbf{x} \in \mathbb{Z}^m$ such that

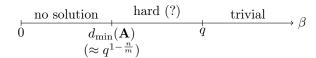
- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

• Dilithium relies on the SIS^{∞} problem

Short Integer Solution in infinity norm $(SIS_{n,m,q,\beta}^{\infty})$

Let be $n, m, q \in \mathbb{N}$ and $\beta > 0$. Given a uniformly random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a **non-zero** vector $\mathbf{x} \in \mathbb{Z}^m$ such that

- $\mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$



Lattice

Given a basis $\mathbf{B} := (\mathbf{b}_1, \dots, \mathbf{b}_k) \in \mathbb{R}^{d \times k}$, the *lattice* generated by \mathbf{B} is the set of all integer linear combinations of the basis vectors \mathbf{b}_i , i.e.,

$$\mathcal{L}(\mathbf{B}) := \left\{ \sum_{i=1}^k z_i \mathbf{b}_i : z_i \in \mathbb{Z} \right\} \subseteq \mathbb{R}^d.$$

$\operatorname{SIS}_{n,m,q,\beta}^{\infty}$ matrix **A**

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a **non-zero** vector $\mathbf{x} \in \mathbb{Z}^m$ such that

- $\bullet \ \mathbf{A}\mathbf{x} = \mathbf{0} \mod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

$SIS_{n,m,q,\beta}^{\infty}$ matrix **A**

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a **non-zero** vector $\mathbf{x} \in \mathbb{Z}^m$ such that

- $\bullet \ \mathbf{A}\mathbf{x} = \mathbf{0} \mod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

β -SVP^{\infty} in the lattice $\Lambda_q^{\perp}(\mathbf{A})$

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a **non-zero** vector $\mathbf{x} \in \mathbb{Z}^m$ such that

- $\bullet \ \mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

$SIS_{n,m,q,\beta}^{\infty}$ matrix **A**

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a **non-zero** vector $\mathbf{x} \in \mathbb{Z}^m$ such that

- $\bullet \ \mathbf{A}\mathbf{x} = \mathbf{0} \mod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

β -SVP^{\infty} in the lattice $\Lambda_q^{\perp}(\mathbf{A})$

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a **non-zero** vector $\mathbf{x} \in \mathbb{Z}^m$ such that

- $\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

For simplicity, consider $\mathbf{A} = [\mathbf{A}'|\mathbf{I}_n]$ with $\mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$

The basis
$$\mathbf{B} := \begin{pmatrix} 0 & \mathbf{I}_{m-n} \\ q\mathbf{I}_n & -\mathbf{A}' \end{pmatrix}$$
 generates $\mathcal{L}(\mathbf{B}) = \mathbf{B}\mathbb{Z}^m = \Lambda_q^{\perp}(\mathbf{A})$.

$$\mathbf{BKW} = \mathbf{Wagner} + \mathbf{Dual} \ \mathbf{distinguishing}$$
(LWE) (SIS)

$$BKW = Wagner + Dual distinguishing$$
(LWE) (SIS)

Historic

- Algorithms to solve LWE are variants of [BKW03]
- [KF15] claimed to solve LWE with ternary secret in subexponential time
- [HKM18] found an issue in their proof for certain regimes $(m = \Theta(n))$

$$\mathbf{BKW} = \mathbf{Wagner} + \mathbf{Dual} \ \mathbf{distinguishing}$$
(LWE) (SIS)

Historic

- Algorithms to solve LWE are variants of [BKW03]
- [KF15] claimed to solve LWE with ternary secret in subexponential time
- [HKM18] found an issue in their proof for certain regimes $(m = \Theta(n))$

Questions

- Is there a provable variant of Wagner to solve SIS^{∞} in subexponential time?
- Can we fix [KF15] for LWE?
- Does it threaten Dilithium?

BKW = Wagner + Dual distinguishing(LWE) (SIS)

Historic

- Algorithms to solve LWE are variants of [BKW03]
- [KF15] claimed to solve LWE with ternary secret in subexponential time
- [HKM18] found an issue in their proof for certain regimes $(m = \Theta(n))$

Questions

- \bullet Is there a provable variant of Wagner to solve SIS^{∞} in subexponential time?
- Can we fix [KF15] for LWE?
- Does it threaten Dilithium?

Yes for

 $\beta = \frac{q}{\text{polylog}(n)}$

Maybe?

No

Outline

① Wagner-style algorithms to solve SIS^{∞}

2 A provable algorithm for SIS^{∞}

3 Implications for cryptographic problems

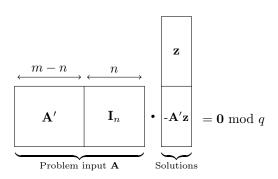
Outline

 \blacksquare Wagner-style algorithms to solve SIS $^\infty$

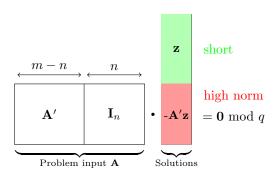
2 A provable algorithm for SIS^{∞}

3 Implications for cryptographic problems

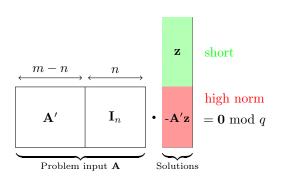
Main idea



Main idea



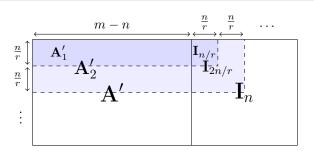
Main idea

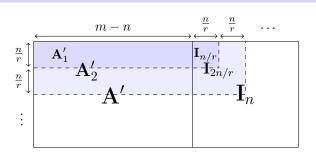


Wagner's algorithm [Wag02]

Input: list L

Output: tuples of elements in L that sum up to $\mathbf{0}$





Wagner step in |BKW03|

Input:
$$\mathbf{A} = [\mathbf{A}' \mid \mathbf{I}_n] \in \mathbb{Z}_q^{n \times m}, \beta > 0$$

Output: List of vectors $\hat{\mathbf{x}} \in \mathbb{Z}_q^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$ and $\|\mathbf{x}\|_{\infty} \leq 2^r \leq \beta$

Divide **A** into submatrices $\mathbf{A}_i = [\mathbf{A}_i' | \mathbf{I}]$

Initialize a list L_0 with vectors from $\mathcal{U}(\{-1,0,1\}^{m-n})$

for
$$i = 1, \ldots, r$$
 do

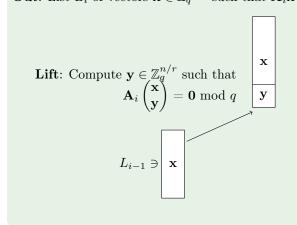
$$L_i := \mathbf{LiftAndCombine}(L_{i-1}, \mathbf{A}_i) \qquad \qquad \triangleright \ \forall \mathbf{x} \in L_i, \mathbf{A}_i \mathbf{x}$$
return L_r

$$\triangleright \forall \mathbf{x} \in L_i, \mathbf{A}_i \mathbf{x} = \mathbf{0} \mod q$$

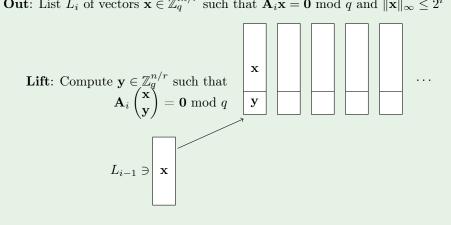
LiftAndCombine

$$L_{i-1}
ightharpoonup \mathbf{x}$$

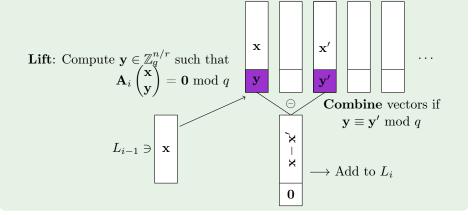
LiftAndCombine



LiftAndCombine



LiftAndCombine



Wagner step in |BKW03|

Input: $\mathbf{A} = [\mathbf{A}' \mid \mathbf{I}_n] \in \mathbb{Z}_a^{n \times m}$

Output: List of vectors $\mathbf{x} \in \mathbb{Z}_q^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$

Divide **A** into submatrices $\mathbf{A}_i = [\mathbf{A}_i' | \mathbf{I}]$

Initialize a list L_0 with vectors from $\mathcal{U}(\{-1,0,1\}^{m-n})$

for $i = 1, \ldots, r$ do

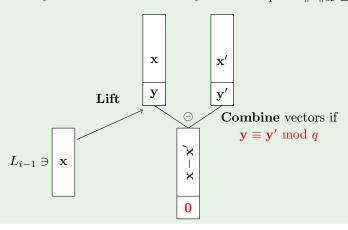
$$L_i := \mathbf{LiftAndCombine}(L_{i-1}, \mathbf{A}_i) \qquad \qquad \triangleright \ \forall \mathbf{x} \in L_i, \mathbf{A}_i \mathbf{x} = \mathbf{0} \ \mathrm{mod} \ q$$

return L_r

Lazy-modulus switching

LiftAndCombine with lazy-mod switching [AFFP14]

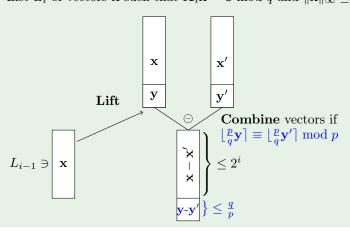
Input: List L_{i-1} of vectors \mathbf{x} such that $\mathbf{A}_{i-1}\mathbf{x} = \mathbf{0} \mod q$ and $\|\mathbf{x}\|_{\infty} \leq 2^{i-1}$ Output: List L_i of vectors \mathbf{x} such that $\mathbf{A}_i\mathbf{x} = \mathbf{0} \mod q$ and $\|\mathbf{x}\|_{\infty} \leq 2^i$



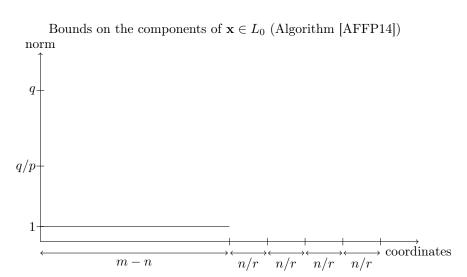
Lazy-modulus switching

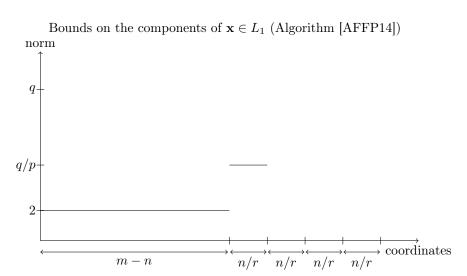
LiftAndCombine with lazy-mod switching [AFFP14]

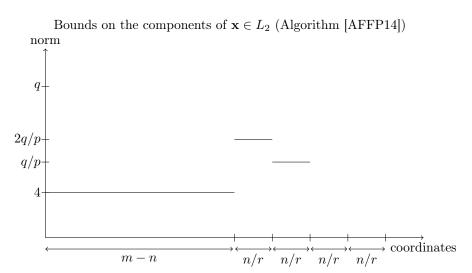
Input: List L_{i-1} of vectors \mathbf{x} such that $\mathbf{A}_{i-1}\mathbf{x} = \mathbf{0} \mod q$ and $\|\mathbf{x}\|_{\infty} \leq 2^{i-1}$ Output: List L_i of vectors \mathbf{x} such that $\mathbf{A}_i\mathbf{x} = \mathbf{0} \mod q$ and $\|\mathbf{x}\|_{\infty} \leq 2^i$

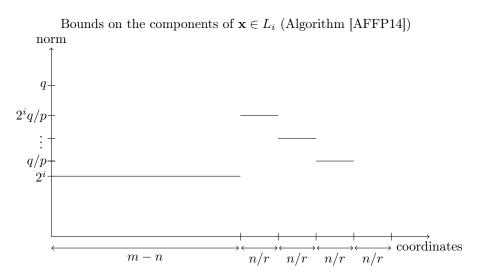


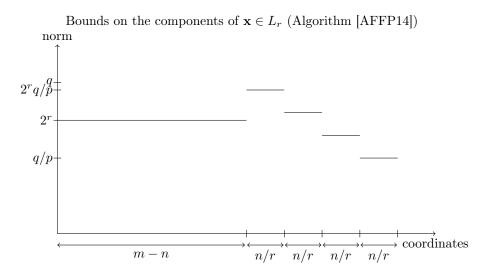
Time complexity: $O(r \cdot p^{n/r})$ Wagner in subexp. time for SIS $^{\infty}$

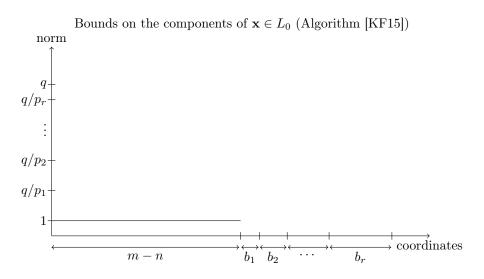


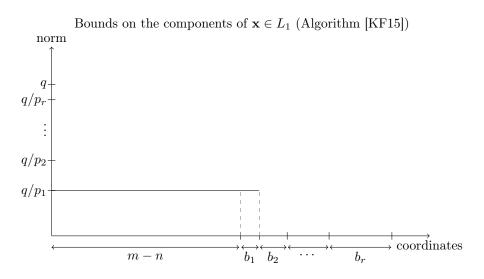


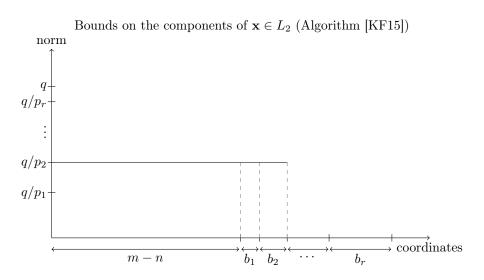


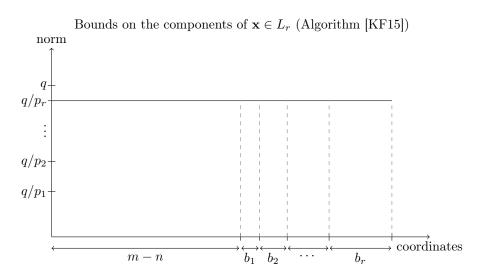




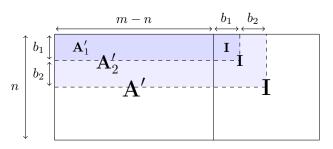








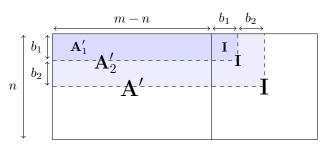
Time complexity: $O(r \cdot |L_i|)$



Parameter selection for target norm $\beta = \frac{q}{f}$ for some f > 1:

- \bullet Number of iterations r
- \bullet Moduli p_i
- Block sizes b_i
- List size $|L_i| = p_i^{b_i}$

Time complexity: $O(r \cdot |L_i|)$

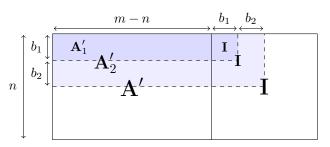


Parameter selection for target norm $\beta = \frac{q}{f}$ for some f > 1:

- Number of iterations $r = \log_2 \beta 1$
- Moduli $p_i = q/2^i$
- Block sizes $b_i = \frac{\ln N}{\ln p_i}$ so that $N = |L_i| = p_i^{b_i}$
- List size $|L_i| = N$ such that it ensures

$$n = \sum_{i=1}^{r} b_i$$

Time complexity: $O(r \cdot |L_i|)$



Parameter selection for target norm $\beta = \frac{q}{f}$ for some f > 1:

- Number of iterations $r = \log_2 \beta 1$
- Moduli $p_i = q/2^i$
- Block sizes $b_i = \frac{\ln N}{\ln p_i}$ so that $N = |L_i| = p_i^{b_i}$
- List size $|L_i| = N$ such that it ensures

$$n = \sum_{i=1}^{r} b_i \le \int_1^{r+1} b_x dx \le \log_2(N) \cdot (\ln \ln q - \ln \ln f)$$

Wagner step in Kirchner-Fouque [KF15]

For $n, m \in \mathbb{N}$, q = poly(n) and f > 1, $\beta := \frac{q}{f}$, we are given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$. There exists an algorithm that returns a vector $\mathbf{x} \in \mathbb{Z}_q^m$ such that

- $\bullet \ \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \le \beta = \frac{q}{f}$

in time

$$r \cdot N = \operatorname{poly}(n, \log q) \cdot 2^{\frac{n}{\ln \ln(q) - \ln \ln(f)}}$$

Wagner step in Kirchner-Fouque [KF15]

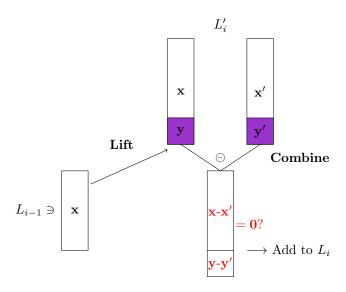
For $n, m \in \mathbb{N}$, q = poly(n) and f > 1, $\beta := \frac{q}{f}$, we are given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$. There exists an algorithm that returns a vector $\mathbf{x} \in \mathbb{Z}_q^m$ such that

- $\bullet \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q$
- $\|\mathbf{x}\|_{\infty} \le \beta = \frac{q}{f}$

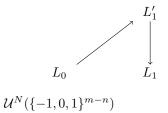
in time

$$r \cdot N = \operatorname{poly}(n, \log q) \cdot 2^{\frac{n}{\ln \ln(q) - \ln \ln(f)}}$$

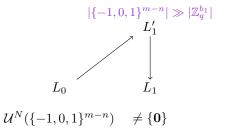
Is **x** non-zero?



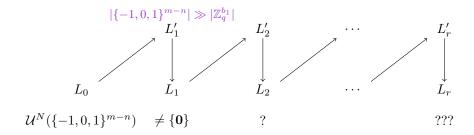
Distributions of the lists?



Distributions of the lists?



Distributions of the lists?



Outline

■ Wagner-style algorithms to solve SIS[∞]

2 A provable algorithm for SIS^{∞}

3 Implications for cryptographic problems

$SIS_{n,m,q,\beta}^{\infty}$ matrix **A**

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a non-zero vector $\mathbf{x} \in \mathbb{Z}_q^m$ such that

- $\bullet \ \mathbf{A}\mathbf{x} = \mathbf{0} \mod q$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

β -SVP^{∞} in the lattice $\Lambda_a^{\perp}(\mathbf{A})$

Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a non-zero vector $\mathbf{x} \in \mathbb{Z}_q^m$ such that

- $\bullet \ \mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}$
- $\|\mathbf{x}\|_{\infty} \leq \beta$

$$\Lambda_i := \Lambda_q^{\perp}(\mathbf{A}_i) = \{\mathbf{x} \in \mathbb{Z}^{m-n+n_i} : \mathbf{A}_i\mathbf{x} = \mathbf{0} \bmod q\} = \mathcal{L}(\mathbf{B}_i)$$

$$\Lambda_i' := \mathcal{L}(\mathbf{B}_i'), ext{ with } \mathbf{B}_i' := egin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{I}_{m-n} \\ \mathbf{0} & q \mathbf{I}_{n_{i-1}} & -\mathbf{A}_i' - \end{pmatrix} =: \mathbf{B}_{i-1}$$

$$\Lambda_i := \Lambda_q^{\perp}(\mathbf{A}_i) = \{\mathbf{x} \in \mathbb{Z}^{m-n+n_i} : \mathbf{A}_i\mathbf{x} = \mathbf{0} \bmod q\} = \mathcal{L}(\mathbf{B}_i)$$

$$\Lambda_i' := \mathcal{L}(\mathbf{B}_i'), \text{ with } \mathbf{B}_i' := \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{I}_{m-n} \\ \mathbf{0} & q\mathbf{I}_{n_{i-1}} & -\mathbf{A}_i' \end{pmatrix} =: \mathbf{B}_{i-1}$$

$$\mathbb{Z}^{m-n} = \Lambda_0 \longleftarrow \Lambda_1 \longleftarrow \Lambda_2 \longleftarrow \cdots \longleftarrow \Lambda_r = \Lambda_a^{\perp}(\mathbf{A})$$

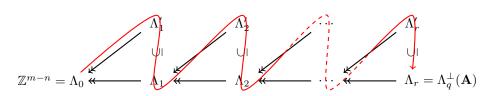
$$\Lambda_i := \Lambda_q^{\perp}(\mathbf{A}_i) = \{ \mathbf{x} \in \mathbb{Z}^{m-n+n_i} : \mathbf{A}_i \mathbf{x} = \mathbf{0} \bmod q \} = \mathcal{L}(\mathbf{B}_i)$$

$$\Lambda_i' := \mathcal{L}(\mathbf{B}_i'), \text{ with } \mathbf{B}_i' := \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{I}_{m-n} \\ \mathbf{0} & q\mathbf{I}_{n_{i-1}} & -\mathbf{A}_i' \end{pmatrix} = : \mathbf{B}_{i-1}$$

$$\mathbb{Z}^{m-n} = \Lambda_0 \overset{\Lambda_1'}{\longleftarrow} \qquad \Lambda_1 \overset{\Lambda_2'}{\longleftarrow} \qquad \dots \overset{\Lambda_r'}{\longleftarrow} \qquad \Lambda_r = \Lambda_q^{\perp}(\mathbf{A})$$

$$\Lambda_i := \Lambda_q^{\perp}(\mathbf{A}_i) = \{\mathbf{x} \in \mathbb{Z}^{m-n+n_i} : \mathbf{A}_i\mathbf{x} = \mathbf{0} \bmod q\} = \mathcal{L}(\mathbf{B}_i)$$

$$\Lambda_i' := \mathcal{L}(\mathbf{B}_i'), ext{ with } \mathbf{B}_i' := egin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{I}_{m-n} \\ \mathbf{0} & q \mathbf{I}_{n_{i-1}} & -\mathbf{A}_i' - \mathbf{A}_i' - \mathbf{A}_i'$$



Discrete Gaussian distribution

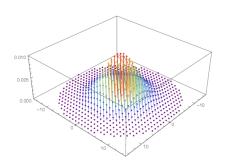
For any s > 0 and $\mathbf{x} \in \mathbb{R}^n$, the Gaussian function is $\rho_s(\mathbf{x}) := e^{-\pi(\|\mathbf{x}\|_2/s)^2}$.

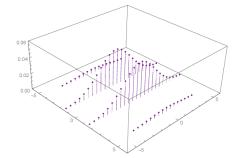
$$\rho_s(\mathcal{L}) := \sum_{\mathbf{x} \in \mathcal{L}} \rho_s(\mathbf{x})$$

Discrete Gaussian distribution

For a full-rank lattice \mathcal{L} and any s > 0, the discrete Gaussian distribution $D_{\mathcal{L},s}$ is defined by

$$\Pr_{X \sim D_{\mathcal{L},s}}[X = \mathbf{x}] = \frac{\rho_s(\mathbf{x})}{\rho_s(\mathcal{L})}.$$





Discrete Gaussian distribution

Convolution lemma

Let be a lattice $\mathcal{L} \subseteq \mathbb{R}^n$, $\varepsilon > 0$ and $s \ge \eta_{\varepsilon}(\mathcal{L})$. For $X_1, X_2 \sim D_{\mathcal{L},s}$,

$$X_1 - X_2 \sim_{3\varepsilon} D_{\mathcal{L},\sqrt{2}s}$$
.

Smoothing parameter: $\eta_{\varepsilon}(\mathcal{L}) := \inf\{s > 0 : \rho_{1/s}(\mathcal{L}^* \setminus \{\mathbf{0}\}) \le \varepsilon\}.$

Lower bound on s for $D_{\mathcal{L},s}$ to 'behave like' a continuous Gaussian distribution.

Wagner as a Gaussian sampler

Wagner-style algorithm for SIS^{∞} [our algorithm]

Input: $\mathbf{A} = [\mathbf{A}' \mid \mathbf{I}_n] \in \mathbb{Z}_q^{n \times m}$

Output: List of vectors $\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A})$

Define sequences of lattices Λ_i, Λ'_i for $i = 0, \dots, r$

Set s_0 such that all the $s_i := \sqrt{2}^i s_0$ satisfy the smoothness conditions Initialize a list L_0 with vectors following D_{Λ_0, s_0}

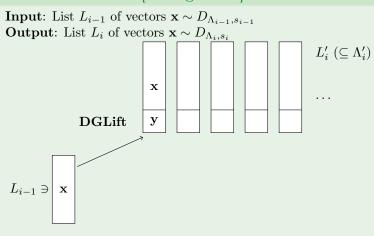
for $i = 1, \ldots, r$ do

 $L_i := \mathbf{LiftAndCombine}(L_{i-1}, \Lambda_i) \qquad \qquad \rhd \ \forall \mathbf{x} \in L_i, \mathbf{x} \sim_{\varepsilon} D_{\Lambda_i, s_i}$

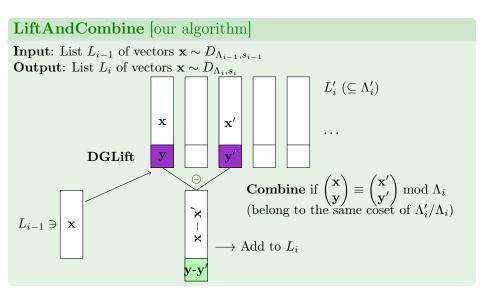
return L_r

Wagner as a Gaussian sampler

LiftAndCombine [our algorithm]



Wagner as a Gaussian sampler



Outline

■ Wagner-style algorithms to solve SIS[∞]

2 A provable algorithm for SIS^{∞}

3 Implications for cryptographic problems

Implications for SIS

Main theorem: Solving SIS^{∞} in provable subexponential time

- $n \in \mathbb{N}$
- $m = n + \omega(n/\log\log n) \in \mathbb{N}$
- q = poly(n) prime such that $q^{1-n/m} \ge 6$

- $0 \le \varepsilon \le \frac{1}{mq^2}$
- f > 1 such that $\frac{q}{f} \ge \sqrt{\ln(1/\varepsilon)}$
- $\beta := \frac{q}{f} \sqrt{\ln m}$

Implications for SIS

Main theorem: Solving SIS^{∞} in provable subexponential time

- $n \in \mathbb{N}$
- $m = n + \omega(n/\log\log n) \in \mathbb{N}$
- q = poly(n) prime such that $q^{1-n/m} \ge 6$

- $0 \le \varepsilon \le \frac{1}{mq^2}$
- f > 1 such that $\frac{q}{f} \ge \sqrt{\ln(1/\varepsilon)}$
- $\beta := \frac{q}{f} \sqrt{\ln m}$

There exists an algorithm that solves $\mathrm{SIS}_{n,m,q,\beta}^\infty$ in expected time

$$T = \operatorname{poly}(n, \ln(1/\varepsilon)) \cdot 2^{\frac{n/2}{\ln \ln q - \ln\left(\ln f + \frac{1}{2} \ln \ln \frac{1}{\varepsilon}\right) - O(1)}} = 2^{O\left(\frac{n}{\ln \ln n}\right)}$$

with success probability $1 - 2^{-\tilde{\Omega}(n)}$.

Definition: Decision-LWE (Learning With Errors)

Let $\mathbf{s} \sim \mathcal{U}(\mathbb{Z}_q^n)$ and χ be a probability distribution on \mathbb{Z} . Decide whether given pairs $(\mathbf{a}, c) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ are sampled according to

- the uniform distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$; or
- the LWE distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$, that samples $c = \langle \mathbf{a}, \mathbf{s} \rangle + e$ with $e \sim \chi$.

Definition: Decision-LWE (Learning With Errors)

Let $\mathbf{s} \sim \mathcal{U}(\mathbb{Z}_q^n)$ and χ be a probability distribution on \mathbb{Z} . Decide whether given pairs $(\mathbf{a}, c) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ are sampled according to

- the uniform distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$; or
- the LWE distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$, that samples $c = \langle \mathbf{a}, \mathbf{s} \rangle + e$ with $e \sim \chi$.

Distinguisher [AR05]: sums together subexponentially many solutions to SIS. It forces to take $\varepsilon=e^{-\tilde{\Omega}(n)}...$

Definition: Decision-LWE (Learning With Errors)

Let $\mathbf{s} \sim \mathcal{U}(\mathbb{Z}_q^n)$ and χ be a probability distribution on \mathbb{Z} . Decide whether given pairs $(\mathbf{a}, c) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ are sampled according to

- the uniform distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$; or
- the LWE distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$, that samples $c = \langle \mathbf{a}, \mathbf{s} \rangle + e$ with $e \sim \chi$.

Distinguisher [AR05]: sums together subexponentially many solutions to SIS. It forces to take $\varepsilon=e^{-\tilde{\Omega}(n)}...$ that makes the runtime for $q=\mathrm{poly}(n)$

$$T = 2^{\frac{n}{\ln \ln q - \ln(\ln f + \frac{1}{2} \ln n) - O(1)}} = 2^{n/O(1)}$$

Definition: Decision-LWE (Learning With Errors)

Let $\mathbf{s} \sim \mathcal{U}(\mathbb{Z}_q^n)$ and χ be a probability distribution on \mathbb{Z} . Decide whether given pairs $(\mathbf{a}, c) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ are sampled according to

- the uniform distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$; or
- the LWE distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$, that samples $c = \langle \mathbf{a}, \mathbf{s} \rangle + e$ with $e \sim \chi$.

Distinguisher [AR05]: sums together subexponentially many solutions to SIS. It forces to take $\varepsilon=e^{-\tilde{\Omega}(n)}...$ that makes the runtime for $q=\mathrm{poly}(n)$

$$T = 2^{\frac{n}{\ln \ln q - \ln(\ln f + \frac{1}{2} \ln n) - O(1)}} = 2^{n/O(1)}$$

Work in progress:

- Choose a sequence of lattices with smaller η_{ϵ} (than $\frac{q}{p_i}\mathbb{Z}^{b_i}$)
- Dual distinguisher by statistical decoding [CDMT22]

Implications for Dilithium

In practice, attacks run faster than the proven version.

 \rightarrow Perform a heuristic time estimation

Implications for Dilithium

In practice, attacks run faster than the proven version.

 \rightarrow Perform a heuristic time estimation

NIST level	\parallel n	m	q	β	$\log_2(\text{Time})$
2 (128)	$256 \cdot 4$	$256 \cdot 9$	8380417	350209	270
3 (192)	$256 \cdot 6$	$256 \cdot 12$	8380417	724481	344
5 (256)	$256 \cdot 8$	$256 \cdot 16$	8380417	769537	451

Implications for Dilithium

In practice, attacks run faster than the proven version.

 \rightarrow Perform a heuristic time estimation

NIST level	n	m	q	β	$\log_2(\text{Time})$
			8380417		270
			8380417		
5 (256)	$256 \cdot 8$	$256\cdot 16$	8380417	769537	451

This attack does not seem to threaten Dilithium

Conclusion

- A provable algorithm for SIS $^{\infty}$ in subexponential time $2^{O\left(\frac{n}{\ln \ln n}\right)}$
- Leads for getting a similar result for LWE
- Dilithium is not broken!

Conclusion

- A provable algorithm for SIS $^{\infty}$ in subexponential time $2^{O\left(\frac{n}{\ln \ln n}\right)}$
- Leads for getting a similar result for LWE
- Dilithium is not broken!

Take-away

- \times Work with coordinates of vectors, roundings, parity-check matrices...
- \checkmark Explicit the mathematical structures underlying the problems

- Prove an algorithm for LWE in subexponential time
 - ▶ Select a sequence of lattices with smaller η_{ϵ} (than $\frac{q}{p_i}\mathbb{Z}^{b_i}$)
 - ▶ Dual distinguisher by statistical decoding [CDMT22]

- Prove an algorithm for LWE in subexponential time
 - ▶ Select a sequence of lattices with smaller η_{ϵ} (than $\frac{q}{p_i}\mathbb{Z}^{b_i}$)
 - ▶ Dual distinguisher by statistical decoding [CDMT22]
- Adapt the algorithm for codes to prove the Information Set Decoding (ISD) framework

- Prove an algorithm for LWE in subexponential time
 - ▶ Select a sequence of lattices with smaller η_{ϵ} (than $\frac{q}{p_i}\mathbb{Z}^{b_i}$)
 - ▶ Dual distinguisher by statistical decoding [CDMT22]
- Adapt the algorithm for codes to prove the Information Set Decoding (ISD) framework
- Improve the (heuristic) ISD exponent
 - Generalize the code sieving algorithm

- Prove an algorithm for LWE in subexponential time
 - ▶ Select a sequence of lattices with smaller η_{ϵ} (than $\frac{q}{p_i}\mathbb{Z}^{b_i}$)
 - ▶ Dual distinguisher by statistical decoding [CDMT22]
- Adapt the algorithm for codes to prove the Information Set Decoding (ISD) framework
- Improve the (heuristic) ISD exponent
 - Generalize the code sieving algorithm

Thank you for your attention!

References

[AFFP14]	Martin R Albrecht et al. "Lazy modulus switching for the BKW algorithm on LWE." In: PKC . 2014.
[AR05]	Dorit Aharonov and Oded Regev. "Lattice problems in NP \cap coNP." In: ACM (2005).
[BKW03]	Avrim Blum, Adam Kalai, and Hal Wasserman. "Noise-tolerant learning, the parity problem, and the statistical query model." In: ACM (2003).
[CDMT22]	Kevin Carrier et al. "Statistical decoding 2.0: Reducing decoding to LPN." In: $Asiacrypt.\ 2022.$
[HKM18]	Gottfried Herold, Elena Kirshanova, and Alexander May. "On the asymptotic complexity of solving LWE." In: Designs, Codes and Cryptography (2018).
[KF15]	Paul Kirchner and Pierre-Alain Fouque. "An improved BKW algorithm for LWE with applications to cryptography and lattices." In: CRYPTO. 2015.