
Scaling up fault injection simulation campaigns
Ambre Iooss

23/10/2025

Synacktiv

French offensive security company, also in Brittany!

~200 security experts

5 departments:
Pentest / Redteam

RE / VR

Development

Incident Response

Revel.io

■

■

■

■

■

■

■

■

2

Introduction
Goal: Running unsigned code on a smartphone with
configured secure boot. Target the boot ROM.

Qualcomm SDM845 System-on-Chip (SoC), 2018
Boot ROM dumped using devboard JTAG.

Problems:

Modern SoC

Large boot ROM (~200 kB)

Package-on-Package: DRAM stacked on SoC

■

■

■

3

Prior work on older SoC

Hector Marco, BlackHat Europe 2022
Side-channel divergence and power glitching: secure boot bypass on Qualcomm MSM8916 (2014).

4

Planning

1. Fault injection simulation (with optimisations) on SDM845 boot ROM

2. Simulation to reality mapping

3. Real-world fault injection campaign and failures

5

Fault injection simulation
and optimisations

6

Fault injection target

7

Fault injection target

Same scenario as MSM8916 BlackHat talk:

Programmer is a ELF file with a segment containing a certificate chain.

Signature verifications chain:
1. Fused public key (immutable)

2. Root CA certificate

3. Attestation CA certificate

4. Loader certificate

5. Hash table signature

Target: bypass Root CA certificate signature verification.

■

■

8

Fault injection simulation
Python tool based on Unicorn-Engine: https://github.com/Ledger-Donjon/rainbow/

emu = rainbow_aarch64()
emu.load("bootrom.elf")
emu.hook_bypass("generate_random", lambda e: e[e["x0"]] = random.randbytes(e["x1"]))
emu.start(0x08000000, 0, count=1000)
fault_skip(emu) # inject fault after 1000 instructions
emu.start(emu["pc"], 0)

Alternative with QEMU TCG backend: https://github.com/erdnaxe/qemu-fault-plugins

qemu-system-arm -machine netduinoplus2 -nographic -d plugin \
 -drive if=none,format=qcow2,file=snapshot.qcow2 -loadvm snapshot \
 -plugin libstoptrigger.so,addr=0x08001235,addr=0x08004019:129,icount=4000000:130 \
 -plugin libskipinsn.so,icount=1000
also works in QEMU user mode

9

https://github.com/Ledger-Donjon/rainbow/
https://github.com/erdnaxe/qemu-fault-plugins

Simulation optimisation #1

Lazy: start simulation from reset address
Consequence: simulation ETA is >3 years

First low-hanging fruits: cut "bad-code" flows early by replacing them with BRK #0 .

Some bad code paths to patch:

BL #0 instructions (can be automatically replaced)

USB error handlers

■

■

10

Simulation optimisation #2
Observations:

Counting instructions can be slow (GDB protocol, QEMU TCG scoreboard)

Breakpoints on addresses is more robust (survive small hooking changes)

Emulation must be deterministic for a fault injection campaign to make sense

Solution: record an execution trace and use it as a reference for fault campaigns

Execution trace contains list of:

struct basic_block_info {
 uint64_t address;
 uint32_t current_cpu;
 uint32_t instructions_count;
 uint8_t instructions_size[instructions_count];
};

This trace can be processed to find blocks executed only once, and fault them first.
Fault by (address, execution_count)

■

■

■

11

Simulation results
Fault model Bypass Error detected Crash

Single instruction skip

0x0031E688:0
0x0031F060:1
0x0031F064:1
0x0031F08C:1
... (25 total)

420+1957 total 17624+ total

Stuck destination register at 0x00000000
0x0031F060:1
0x0031F064:1

23+277 total 5861+ total

Stuck destination register at 0xFFFFFFFF 0x0031F064:1 5+142 total 14484+ total

Target: second execution at address 0x0031F064
Static analysis: 0x0031F064 seems related to reading fuses

12

Side-channel simulation

Hamming Weight of the destination register, relative to the instruction count 13

Simulation to reality mapping

14

USB triggering
Problem: need a hardware trigger as a reference for faults injection

Simulation conclusion: fault after the last packet of the loader hash table segment

Solution: modify Cynthion USB analyser to raise a trigger on the USB packet

15

USB triggering

16

USB triggering
--- i/cynthion/python/src/gateware/analyzer/analyzer.py
+++ w/cynthion/python/src/gateware/analyzer/analyzer.py
@@ -212,6 +214,11 @@ class USBAnalyzer(Elaboratable):
 m.d.sync += [
 fifo_words_pending .eq(self.HEADER_SIZE_WORDS),
]
+
+ # Trigger down
+ m.d.sync += [
+ self.pkt_trigger.eq(0)
+]
 with m.Elif(current_time == 0xFFFF):
 # The timestamp is about to wrap. Write a dummy event.
 m.d.comb += [
@@ -253,6 +260,11 @@ class USBAnalyzer(Elaboratable):
 m.d.comb += [
 write_header .eq(1),
]
+ # Trigger up if last fully-received packet contains 395 bytes
+ with m.If(packet_size == 395):
+ m.d.sync += [
+ self.pkt_trigger.eq(1)
+]
 m.next = "AWAIT_PACKET"

17

Side-Channel Analysis

Problem: need side-channel traces to match fault simulation patterns

Smartphone: Xiaomi Mi 8, PCB boardview, schematics and EDL loader are leaked online

Power rails identification (behind SoC):

PM845 - Power Management IC for SDM845

VDD_APC0 - Application Processor Core 0 power domain

VDD_APC1 - Application Processor Core 1 power domain, off during boot
VDD_CX - Digital power domain directly supplied by Core crystal oscillator (CXO)

VDD_MX - Memory power domain

■

■

■

■

■

18

Side-Channel Analysis

19

Side-Channel Analysis

20

Side-Channel Analysis
Some patterns emerge from averaging without any post-processing!

21

Side-Channel Analysis
Average of 1000 synced traces

22

Simulation mapping

23

Simulation mapping

24

Fault injection campaign

25

Improving low cost fault injection setup

1. Patch to improve PIO trigger precision from 8ns to 5ns, submitted to upstream.
https://github.com/newaetech/chipshouter-picoemp/pull/40

2. HVP pin (low-voltage) connected to a mosfet for power glitching.

26

https://github.com/newaetech/chipshouter-picoemp/pull/40

EMFI above SoC
Problem: DRAM stacked on SoC acts as a shield.

27

EMFI above SoC
Observation: crash on the side at "500V"

28

EMFI on capacitors
Problem: four-terminals capacitors have reduced EM sensibility.

29

Power glitching with capacitors
Problem: no effects with ground crowbar glitch.

30

Power glitching without capacitors

31

Conclusion

1.5s per try (USB reset).

7 unknown CMD response

4 read data error 0x0D (fault happens too early)

10 USB error

no interesting faults and very low fault rate

Further static analysis reveals hardening (double checks, secured booleans, added jitter).

SDM845 has fault injection hardening that MSM8916 did not have.

■

■

■

■

32

Discussion

33

Bibliography

Clément Fanjas and al., "PoP DRAM: A new EMFI approach based on EM-induced
glitches on SoC", https://cea.hal.science/cea-04948475v1

B. Kerler, unofficial Qualcomm Firehose / Sahara tools, https://github.com/bkerler/edl

Qualcomm Glossary, postmarketOS Wiki,
https://wiki.postmarketos.org/wiki/Qualcomm_Glossary

Niclas Kühnapfel and al., 2022, "EM-Fault It Yourself: Building a Replicable EMFI
Setup for Desktop and Server Hardware", https://arxiv.org/abs/2209.09835

Hector Marco, 2022, BlackHat Europe, "Vlind Glitch: A Blind VCC Glitching Technique
to Bypass the Secure Boot of the Qualcomm MSM8916 Mobile SoC"

■

■

■

■

■

34

https://cea.hal.science/cea-04948475v1
https://github.com/bkerler/edl
https://wiki.postmarketos.org/wiki/Qualcomm_Glossary
https://arxiv.org/abs/2209.09835

https://synacktiv.com

https://bsky.app/profile/synacktiv.com

https://www.linkedin.com/company/synacktiv

https://synacktiv.com/
https://bsky.app/profile/synacktiv.com
https://www.linkedin.com/company/synacktiv

