REFERENTIEL TEC - DEGE

Périmètre constituant la THEMATIQUE « TELECOMMUNICATIONS ET RESEAUX » « DETECTION ET GUERRE ELECTRONIQUE »

Le périmètre des domaines « Télécommunications et Réseaux » (TEC) et Détection et Guerre Electronique » (DEGE) est défini par la liste de mots clefs ci-dessous, classés selon trois axes scientifiques et techniques : I/« Propagation, fréquences, antennes », II/« Systèmes de transmission », et III/« Réseaux ».

I/ Propagation, fréquences et antennes

1.1.1 Propagation, fréquences

- Ingénierie du spectre
- Montées en fréquences
- Communications millimétriques
- Gestion et planification des fréquences (systèmes classiques et radio cognitive)
- Propagation des ondes (études des canaux de propagation, milieux complexes, etc...)
- Influence de la propagation des ondes sur les performances des systèmes de transmission et des formes d'onde
- Sondage, mesures, caractérisation spatiale et modélisation du canal de propagation (canaux de différents types : sol-sol, sol-air, air-air...)
- Modélisation de la propagation par approche Deep Learning, algorithmes d'I.A¹. pour prédiction de propagation par apprentissage

1.1.2 Antennes

- Matériaux pour les hyperfréquences (absorbants, métamatériaux et métasurfaces, miniaturisation, agilité, surfaces multifonctionnelles, etc...), matériaux MMD (Matériaux Magnéto-Diélectriques) ...
- Fabrication additive d'antennes
- Technologies d'antennes, co-conception, co-construction
- Optimisation des antennes classiques à modules actifs
- Antennes multibandes, à formation de faisceaux, multimodales...
- Systèmes MIMO², massive MIMO...
- Architectures antennaires avancées (antennes réseaux à pointage électronique, antennes multifonctions, antennes intégrées, antennes basses fréquences à encombrement réduit...)
- Conception d'antennes pour limiter l'auto-interférence en « in-band full-duplex »
- Conception d'antennes goniométriques (estimation d'angles d'arrivées)
- RIS (Surfaces reconfigurables intelligentes)
- RF³/filtres antennaires, OEM⁴ & optique (filtre multibandes à commutation optique...)
- Optimisation des performances des antennes (gain, agilité, largeur de bande, dimensions...)
- Caractérisation des systèmes antennaires (gains antennaires, champ lointain, champ proche...)

¹ I.A.: Intelligence Artificielle

² MIMO : Multiple Input Multiple Output

³ RF : Radio Fréquences

⁴ OEM : Ondes ElectroMagnétiques

- Techniques avancées pour la mesure d'antennes (incluant éventuellement des techniques l'I.A.), techniques de mesure d'antennes en environnement défavorable
- Systèmes embarqués, intégration des systèmes antennaires sur les porteurs (terrestres, aéronautiques, navals, spatiaux), y compris drones et robots

Compatibilité RadioElectrique (CRE)

- Etude des perturbations entre émetteurs et récepteurs radioélectriques sur un même porteur via les antennes sur un large spectre fréquentiel (bande utile et en dehors)
- Cohabitation de systèmes radioélectriques co-localisés sur un même porteur (véhicule, navire, aéronef, pylône...) et traitement des signaux électromagnétiques émis par l'antenne d'un système et reçus par l'antenne d'un autre système

Compatibilité ElectroMagnétique Inter Systèmes (CEMIS)

- Etude des perturbations radioélectriques entre systèmes différents
- Cohabitation de systèmes radioélectriques non co-localisés, et traitement des signaux électromagnétiques émis par l'antenne d'un système et reçus par l'antenne d'un autre système

Modélisations et simulations

- Modélisations et simulations électromagnétiques
- Modélisation multiphysiques (intégrant des modèles de matériaux, température...)

II/ Systèmes de transmission

Formes d'onde, traitement du signal, modems

- Communications numériques
- Architectures numériques (Manycore (GPP⁵ + DSP⁶), DSP, FPGA⁷, GPP, MCU⁸, GPU⁹, ASICs¹⁰...)
- Caractéristiques RF (filtrage, CAN¹¹, linéarité, gains...)
- Composants hyperfréquences pour chaîne radiofréquences (filtrage, annulation d'interférence, limiteurs de puissance, composants pilotables...)
- Traitement multi-antennes & précodage (MIMO, mMIMO...)
- Traitement antennaire hybride analogique / numérique, reconfiguration d'éléments antennaires
- Communications « in-band full-duplex » (mêmes slots temporels, mêmes fréquence), annulations analogique et numérique de l'auto-interférence
- Combinaison modulation spatiale et « In-band full-duplex »
- Amplificateurs de puissance (communications satellite / SATcoms)
- Amplificateurs de puissance non linéaire classe D (transistors de sortie actionnés comme des commutateurs)
- Optimisation du PAPR¹² (Modulation, Prédistortion, Enveloppe Tracking, ...)
- Drivers pour les communications, modems
- Modems reprogrammables multifonctions, multi formes d'onde, large bande, multiniveaux de sécurité
- Exploitation optimale des ressources (temporelles, spectrales, spatiales, puissance)
- Montée en fréquences, en capacité multispectrales, en débit

⁷ FPGA: Field Programmable Gate Array

⁸ MCU : MicroControler Unit ⁹ GPU : Graphics Processor Unit

ASIC : Application Specific Integrated CircuitCAN : Convertisseur Analogique-Numérique

¹² PAPR : Peak-to-Average Power Ratio

_

⁵ GPP : General Purpose Processor ⁶ DSP : Digital Signal Processor

- Très hauts niveaux d'efficacités spectrales, efficacité spectrale et énergétique
- Traitement du signal (classique, parcimonieux), I.A. et traitement du signal
- Accès multi-utilisateurs (TDMA, CDMA, SDMA, FDMA¹³...)
- Formes d'onde sécurisées
- Sécurisation de la couche physique (PHYSEC¹⁴, TRANSEC¹⁵)
- Algorithmes numériques de réduction des interférents
- Optimisation des mécanismes de synchronisation
- Optimisation de la résistance au brouillage des formes d'onde de communications
- Formes d'onde discrètes et furtives, non détectables
- Formes d'onde Radcoms (Radar & Communications)
- Nouvelles formes d'onde, I.A. et formes d'onde
- Codage des communications
- Codage pour travailler en aveugle
- Nouveaux codages canals pour les formes d'onde (codage canal en tant que FEC¹⁶...)
- Nouveaux codages sources pour les formes d'onde
- Codage conjoint source / canal
- Menaces sur la couche physique des formes d'onde : détection / interception / localisation / Reconnaissance / Classification en Aveugle de signaux de Communication

Systèmes de transmission

- Radio logicielle (SDR Software Defined Radio)
- Radio cognitive (reconfiguration dynamique en fréquences)
- Reconfiguration des communications, reconfiguration dynamique des matériels
- Systèmes de transmission radio (terrestre, aérien, maritime)
- Systèmes de transmission satellite (composante spatiale et composante sol)
- Systèmes conjoint de communication et goniométrie
- Systèmes de transmission optique (espace libre, satellite (FSO¹⁷) ou fibre optique)
- Communications quantiques (QSN/QKD¹⁸, QIN¹⁹)
- Systèmes embarqués, intégration des systèmes de transmissions sur les porteurs (terrestres, aéronautiques, navals, spatiaux), y compris drones et robots

Vulnérabilité des transmissions

- Géo/localisation
- Techniques de brouillage SATComs
- Lutte anti-drone (caractérisation, identification, localisation, brouillage)
- Analyse de techniques EVF (remontée de la chaine de saut)
- Analyse des procédés numériques de télécommunication (remontée de scramblers, FEC, entrelaceurs)
- Fingerprinting RF

III/ Réseaux

Protocoles réseaux

- Protocoles réseaux, protocoles de transport
- Protocoles du plan de contrôle (protocoles de routage, de signalisation...)
- Protocoles de sécurisation de réseaux

¹³ TDMA, CDMA, SDMA, FDMA: Time, Code, Space, Frequency – Division Multiple Access

¹⁴ PHYSEC: PHYsical SECurity

¹⁵ TRANSEC: TRANmission SECurity

¹⁶ FEC : Forward Error Correction

¹⁷ FSO: Free Space Optic (communications optiques LASER)

¹⁸ QSN/QKD : Quantum Secured Networks / Quantum Key Distribution (partage de bits)

¹⁹ QIN : Quantum Information Networks (partage d'états / téléportation)

- Menaces sur les couches MAC (Media Access Control), « RESEAU » (IP²⁰), et « TRANSPORT » (TCP/UDP²¹)
- Protocoles de gestion/supervision/administration de réseaux
- Protocoles de métrologie et de télémétrie
- Virtualisation/softwarisation des réseaux (SDWAN²², SDN²³, NFV²⁴...)
- Programmabilité des réseaux
- Reconfiguration dynamique des réseaux

Architectures réseaux

- Architecture de réseaux hétérogènes
 - Réseaux radio (de type mobiles 5G, 6G...)
 - Réseaux satellites (y compris 5G/NTN²⁵)
 - Réseaux optiques
 - Réseaux d'infrastructure
 - Réseaux sans infrastructures (de type MANET²⁶)
 - Réseaux IoT²⁷
- Routage
- Virtualisation/softwarisation des réseaux
- VPN²⁸ (L3VPN, EVPN, IPsec...)
- Architecture sécurisée de réseaux (y compris virtualisé)
- Architecture et traitements distribués (de type MEC²⁹, IAB³⁰, reconfiguration automatique...)
- Modèles de topologie de réseaux
- Réseaux quantiques (QSN/QKD, QIN)

Services réseaux transverses

- Traitement des flux hétérogènes et sporadiques, ingénierie de trafic
- Performances sur réseau uniques et entre réseaux hétérogènes (débits, latences...)
- QoS/QoE³¹
- Optimisation de l'allocation des ressources
- Reconfiguration des communications, reconfiguration dynamique des matériels
- Métrologie des réseaux
- Gestion/supervision/administration de réseaux
- Détection et gestion d'anomalies réseaux
- Résilience des communications et du matériel
- I.A. et réseaux (routage, supervision, « Données réseaux » ...)
- Télémétrie et base de « donnée réseaux » (problématique « I.A. et réseaux »)
- Optimisation des mécanismes de synchronisation horaire, réseaux à contrainte temps réel (de type TSN³²...)
- Efficacité énergétique
- Simulations « réseaux »

²¹ TCP/UDP : Transmission Control Protocol / User Datagram Protocol

²⁸ VPN: Virtual Private Networks

²⁹ MEC: Multi-access Edge Computing

³⁰ IAB : Integrated Access & Backhaul

³¹ QoS/QoE : Quality of Service / Quality of Experience

²⁰ IP : Internet Protocol

²² SDWAN : Software Defined Wide Area Networs

²³ SDN :Software Defined Networks

²⁴ NFV : Network Functions Virtualization

²⁵ NTN: Non Terrestrial Networks

²⁶ MANET: Mobile Ad hoc NETworks

²⁷ IoT: Internet of Things

³² TSN: Time Sensitive Networks