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EM side-channel attack

Radio receiver

Computer
Target device

EM p
robe

Attacking an ATmega328 on a Arduino Nano and an nRF51422 4



Overview

Contribution
Demonstrating a novel side-channel leakage source through
unintended phase modulation of electromagnetic signal

Outline
1. Exploitation of phase in side channels
2. Analysis of the root cause phenomenon
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Proxy Traces – From Amplitude to Power

= Proxy

EM Amplitude

Power

[QS01; VP09; Cam+18; WWD20; Gen+22]
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Amplitude in Signal Representation

Real-valued signal
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A
=
1

T = 1
f

7



Amplitude in Signal Representation

Real-valued signal

Time

s(t) = A sin(2πf t + ϕ)

s(t) = I cos(2πf t) + Q sin(2πf t)

A
=
1

T = 1
f

7



Amplitude in Signal Representation

Real-valued signal

Time

s(t) = A sin(2πf t + ϕ)

xi = I+ jQ
s(t) = I cos(2πf t) + Q sin(2πf t)

Complex-valued signal

(analytic representation)

A
=
1

T = 1
f

7



Amplitude in Signal Representation

Real-valued signal

Time

s(t) = A sin(2πf t + ϕ)

xi = I+ jQ
s(t) = I cos(2πf t) + Q sin(2πf t)

Complex-valued signal

(analytic representation)

0 = 2π

π

2

π

3π
2

A
=
1

T = 1
f

7



Amplitude in Signal Representation

Real-valued signal

Time

s(t) = A sin(2πf t + ϕ)

xi = I+ jQ
s(t) = I cos(2πf t) + Q sin(2πf t)

Complex-valued signal

(analytic representation)

0 = 2π

π

2

π

3π
2

Real

Imaginary

I

Q

A
=
1

T = 1
f

7



Amplitude in Signal Representation

Real-valued signal

Time

s(t) = A sin(2πf t + ϕ)

xi = I+ jQ
s(t) = I cos(2πf t) + Q sin(2πf t)

Complex-valued signal

(analytic representation)

0 = 2π

π

2

π

3π
2

Real

Imaginary

I

Q

A
=
1

T = 1
f

A

7



Simple SDR receiver Architecture

Various Software-Dėned Radios (from 20$ to 1000$)
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Modulations in Compromising Emanations

Di˽erence in the
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Amplitude Modulation (AM)

Message (Baseband):
m(t) = Am sin(2πfmt + ϕm)

In EM side channels, message is related to the secret, carrier can be a digital clock for example 10
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Summarizing signal processing background

We know...
• How to represent a signal (using IQs a.k.a. analytic representation)
• How to measure a signal (using SDRs)
• How information is embedded inside a signal (through modulation)

We can now...
1. Acquire our signals
2. Demodulate them
3. Perform a side-channel attack
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Visualizing AES in Amplitude Trace

AES Key
Scheduling AES rounds AES rounds

AES Key
Scheduling

AES AES

13



Exploitation of Phase-modulated
Side Channels

Phase-modulated Emanations to
Side-channel Trace



Proxy Traces – From Phase to Power

= Proxy

EM Amplitude

Power

[QS01; VP09; Cam+18; WWD20; Gen+22]

14



Proxy Traces – From Phase to Power

= Proxy

EM Amplitude

Power

[QS01; VP09; Cam+18; WWD20; Gen+22]

EM Phase

[Ayo+24]
[OFl24]

Our work

14



Phase in Signal Representation

Real-valued signal

Time

s(t) = A sin(2πf t + ϕ)

xi = I+ jQ
s(t) = I cos(2πf t) + Q sin(2πf t)

Complex-valued signal

(analytic representation)

0 = 2π

π

2

π

3π
2

Real

Imaginary

I

Q

A
=
1

T = 1
f

A

15



Phase in Signal Representation

Real-valued signal

Time

s(t) = A sin(2πf t + ϕ)

xi = I+ jQ
s(t) = I cos(2πf t) + Q sin(2πf t)

Complex-valued signal

(analytic representation)

0 = 2π

π

2

π

3π
2

Real

Imaginary

I

Q

A
=
1

T = 1
f

A

ϕ = π

15



Phase in Signal Representation

Real-valued signal

Time

s(t) = A sin(2πf t + ϕ)

xi = I+ jQ
s(t) = I cos(2πf t) + Q sin(2πf t)

Complex-valued signal

(analytic representation)

0 = 2π

π

2

π

3π
2

Real

Imaginary

I

Q

A
=
1

T = 1
f

A
ϕ

ϕ = π

15



Phase Modulation (PM)

Message (Baseband):
m(t) = Am sin(2πfmt + ϕm)

Carrier (Bandpass):
c(t) = Ac sin(2πfct + ϕc)

Phase-modulated carrier (Bandpass):
y(t) = Acsin(2πfct + ϕc + m(t))

16



Phase Modulation (PM)

Message (Baseband):
m(t) = Am sin(2πfmt + ϕm)

Carrier (Bandpass):
c(t) = Ac sin(2πfct + ϕc)

Phase-modulated carrier (Bandpass):
y(t) = Acsin(2πfct + ϕc + m(t))

16



Phase Modulation (PM)

Message (Baseband):
m(t) = Am sin(2πfmt + ϕm)

Carrier (Bandpass):
c(t) = Ac sin(2πfct + ϕc)

Phase-modulated carrier (Bandpass):
y(t) = Acsin(2πfct + ϕc + m(t))

16



Phase Modulation (PM)

Message (Baseband):
m(t) = Am sin(2πfmt + ϕm)

Carrier (Bandpass):
c(t) = Ac sin(2πfct + ϕc)

Phase-modulated carrier (Bandpass):
y(t) = Acsin(2πfct + ϕc + m(t))

16



Phase Modulation (PM)

Message (Baseband):
m(t) = Am sin(2πfmt + ϕm)

Carrier (Bandpass):
c(t) = Ac sin(2πfct + ϕc)

Phase-modulated carrier (Bandpass):
y(t) = Acsin(2πfct + ϕc + m(t))

16



Phase Trace Computation: Step 1

17



Phase Trace Computation: Step 1

17



Step 1: Instantaneous Phase

π

2

π

3π
2

Imaginary
(Complex-valued)

I

Q
φ

0 = 2π
Real

Wrapped
Phase (φ)

φ(t) = arg(x(t)) = arctan2 (Q(t), I(t))

18



Step 1: Instantaneous Phase

π

2

π

3π
2

Imaginary
(Complex-valued)

I

Q
φ

0 = 2π
Real

Wrapped
Phase (φ)

φ(t) = arg(x(t)) = arctan2 (Q(t), I(t))

Co
mp
lex
sig
na
l x
(t)

18



Step 1: Instantaneous Phase

π

2

π

3π
2

Imaginary
(Complex-valued)

I

Q
φ

0 = 2π
Real

Wrapped
Phase (φ)

φ(t) = arg(x(t)) = arctan2 (Q(t), I(t))

Co
mp
lex
sig
na
l x
(t)

Time (t)

(Real-valued)

18



Step 1: Instantaneous Phase

π

2

π

3π
2

Imaginary
(Complex-valued)

Wrapped
Phase (φ)

φ(t) = arg(x(t)) = arctan2 (Q(t), I(t))
Time (t)

(Real-valued)

π

6

18



Step 1: Instantaneous Phase

π

2

π

3π
2

Imaginary
(Complex-valued)

Wrapped
Phase (φ)

φ(t) = arg(x(t)) = arctan2 (Q(t), I(t))
Time (t)

(Real-valued)

π

6

0

2π

Problem
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Phase Trace Computation: Step 2
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Step 2: Continuous Instantaneous Phase

Φ(t) = φ(t) + k(t)2π

• k ∈ {0, 1, 2, ...} increased for each 2π discontinuity

• t cumulative function (not constrained to the 2 principal-values)
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Step 3: Phase Shift Analysis

Φshif t(t) =
dΦ
dt (t) =

{

0, if t = 0
Φ(t)− Φ(t − 1), otherwise

• Compute the ̇rst derivative (numerical di˽erentiation)
• → Phase shift between two samples
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Visualizing AES in a Phase Shift Trace
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Captured from an nRF52832 using a near-̇eld probe connected to an SDR tuned at 2nd clock harmonic 24



Visualizing AES in a Phase Shift Trace

AES Key
Scheduling AES rounds AES rounds

AES Key
Scheduling

AES AES

AES trace in amplitude (left) and phase shift (right)

Captured from an nRF52832 using a near-̇eld probe connected to an SDR tuned at 2nd clock harmonic 24
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Experimental Setup for Side-Channel Attack

Anechoic Box

Near-Field Probe

C
ryptographic Input

Computer (Attacker)

IQ samples

EMR

Amplifier
SDR

Target Device

~ mm 

SoC Board

STM32L1 NUCLEO-L152RE
nRF52832 PCA10040
nRF51422 PCA10028
ATmega328 Arduino Nano
RP2040 Raspberry Pi Pico
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Non-Prȯled Side-Channel Attack on nRF52
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Mono-Channel Attack using Phase Shift
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Non-Prȯled Side-Channel Attack on nRF52
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Multi-Channel Attack

Questions

1. Are the information on amplitude and the phase identical?

2. If not, could we recombine it?
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Multi-Channel Attack

Questions

1. Are the information on amplitude and the phase identical?
2. If not, could we recombine it?

Solution
Multi-channel attacks are to side channels what diversity is to
radio communications
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Multi-Channel Attack
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Non-Prȯled Side-Channel Attack on nRF52
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Phase to CPU Power: Something is Missing

= Proxy

EM Amplitude
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Phase to CPU Power: Something is Missing
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Phase to Jitter Equivalence
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State-of-the-Art: Jitter Side-Channels

Recent Work: Timing Side Channels Exploiting Jitter

• Gravellier et al. [Gra+21] (2021)
By software, they exploited the jitter correction coe˾cients of
delay lines in high-speed digital buses (DDR).

• Schoos et al. [Sch+23] (2023)
External Jitter measurement from a cryptographic target using a
timing sensor at the picosecond scale.
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Jitter Sources Hypotheses in MCUs / SoCs

Question
• Which components are more sensitive to noise?
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Jitter Sources Hypotheses in MCUs / SoCs

Coupling path
• Conducted noise via power rails
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Jitter Sources Hypotheses in MCUs / SoCs
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Jitter Sources Hypotheses in MCUs / SoCs

Indirect coupling because of parasitic e˽ects
• Resistive, capacitve and inductive coupling
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Root-cause characterization

Experiments



Experimental Setup for Jitter Source Study

Target µC
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Jitter vs. Consumption

Clock Jitter under various power consumption conditions
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Jitter vs. Clock Coṅguration

Clock Jitter under various internal clock circuit coṅgurations.
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Clock Jitter under various internal clock circuit coṅgurations.
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Overconsumption E˽ect on EM Phase – Setup
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Overconsumption E˽ect on EM Phase – Setup
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Short-circuit assert

Short-circuit release

Overconsumption E˽ect on EM Phase – Results

Measure example

• Jitter ( t) measure: 275 ps
• Phase shift ( ) measure: 0 125 rad
• Jitter to Phase shift conversion: 2 f t
• Error 0 014 rad
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Short-circuit assert

Short-circuit release

Overconsumption E˽ect on EM Phase – Results

Measure example

• Jitter (∆t) measure: 275 ps
• Phase shift (φ) measure: 0.125 rad
• Jitter to Phase shift conversion: φ = 2πf ·∆t
• Error ≈ 0.014 rad

40
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Attacks Summary

SoC Key Recovery using Amplitude / Phase Shift

STM32L1 ȴȩ /ȴȩ

nRF52832 ȴȩ /ȴȩ

nRF51422 ȴȩ /ȴȩ

ATmega328 ȴȩ /ȴȩ

RP2040 « /«

Lots of devices seems to be impacted... 41



Conclusion

Questions
May systems not vulnerable to amplitude EM analysis be
vulnerable to phase EM analysis?

Future work
Assess how SDR performs compared to oscilloscope using MCFA

Practical applications
Attacks su˽ering from limited performance with amplitude may
become threatening with phase
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Questions?

Pierre Ayoub, Aurélien Hernandez, Romain Cayre, Aurélien Francillon,

Clémentine Maurice “PhaseSCA: Exploiting Phase-Modulated Emanations in

Side Channels”. In: IACR Transactions on Cryptographic Hardware and

Embedded Systems (TCHES), 2024

Artifact (Code & Datasets):

https://github.com/pierreay/phasesca

42
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Main channel vs. Side channel
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Identifying Phase-Modulated Leakage on a Target SoC
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Filtering the Leaked Signal: Principle
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Figure 1: Waterfall illustrating ̇lters isolating amplitude and phase shift
leakage. A low-pass ̇lter is used to isolate the phase-modulated leakage, while a high-pass
̇lter is used to isolate the amplitude-modulated leakage.
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Filtering the Leaked Signal: Results
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(a) Using a low-pass ̇ltered signal at
1 MHz.
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(b) Using a low-pass ̇ltered signal at
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Figure 2: Correlation coe˾cients (ρ) for POIs on phase shift for the nRF52.
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Performance for Prȯled Attacks
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(a) Key rank for the nRF52.
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(b) Key rank for the nRF51.
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(c) Key rank for the STM32L1.
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(d) Key rank for the ATmega328.
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Performance for Non-Prȯled Attacks
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(a) Key rank for the nRF52.
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(b) Key rank for the nRF51.
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(c) Key rank for the STM32L1.
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Embedded System Complexity is Increasing
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Phase in Screaming Channels (Custom)

AES leak signal at Screaming Channels frequencies in the Far Field
(FF) 2.5 GHz).
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Figure 5: Signal captured during radio broadcast from an instrumented
̇rmware in both time-domain (upper) and frequency-domain (down) for
both amplitude (left) and phase (right). We can observe the key scheduling of AES and
its 10 rounds in time-domain and 4 full run of AES in frequency-domain.
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Phase in Screaming Channels (NimBLE)

AES leak signal at Screaming Channels frequencies in the Far Field
(FF) 2.5 GHz).

AES Key Scheduling AES Key SchedulingAES 1st round AES 1st round

Figure 6: Signal captured during a BLE communication from NimBLE for both
amplitude (left) and phase (right).

59



Zoom on a Example Clocking Circuit
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Figure 7: Simpli̇ed view of the STM32F103RB internal clocking circuit.
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State-of-the-Art

Foundational Work: EM Side Channels

• NSA’s NACSIM 5000: TEMPEST Fundamentals [Ros82]
• Agrawal et al. [Agr+03]: Preliminary experiments with PM/FM emanations

• Li et al. [LMM05]

Recent Work: Timing Side Channels exploiting Jitter

• Gravellier et al. [Gra+21]: Read delay-line registers
• Schoos et al. [Sch+23]: Implement a TDC using a delay-line

Parallel Work: Side Channels exploiting Phase Modulation

• Colin O’Flynn [OFl24]: Physical connection to RF mixer

62



State-of-the-Art

Foundational Work: EM Side Channels

• NSA’s NACSIM 5000: TEMPEST Fundamentals [Ros82]
• Agrawal et al. [Agr+03]: Preliminary experiments with PM/FM emanations

• Li et al. [LMM05]

Recent Work: Timing Side Channels exploiting Jitter

• Gravellier et al. [Gra+21]: Read delay-line registers
• Schoos et al. [Sch+23]: Implement a TDC using a delay-line

Parallel Work: Side Channels exploiting Phase Modulation

• Colin O’Flynn [OFl24]: Physical connection to RF mixer

62



State-of-the-Art

Foundational Work: EM Side Channels

• NSA’s NACSIM 5000: TEMPEST Fundamentals [Ros82]
• Agrawal et al. [Agr+03]: Preliminary experiments with PM/FM emanations

• Li et al. [LMM05]

Recent Work: Timing Side Channels exploiting Jitter

• Gravellier et al. [Gra+21]: Read delay-line registers
• Schoos et al. [Sch+23]: Implement a TDC using a delay-line

Parallel Work: Side Channels exploiting Phase Modulation

• Colin O’Flynn [OFl24]: Physical connection to RF mixer

62



Root Causes

• Due to complexity of chip designs, results must be treated with
precaution

• New security issue due to key internal components
• Physical phenomena exploitable usually below the engineering
scope (e.g., EMC, functional integrity, speci̇cations)
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