Design and analysis of dual attacks in code- and lattice-based cryptography

PhD Defense, Inria Paris, September 30, 2025

Charles Meyer-Hilfiger, Irisa & Univ. Rennes

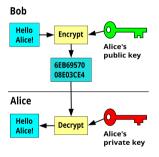
Under the supervision of Nicolas Sendrier and Jean-Pierre Tillich

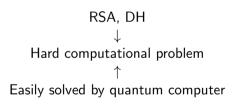
Section 1

Introduction

Public-Key cryptography

Used for safe communication over insecure channel without pre-shared secret.





Post-Quantum (Public-Key) cryptography

Lattice, Code, Multivariate, Isogenies

	Code-based	Lattice-based
Encryption	HQC (NIST), McEliece,	Kyber (NIST),
	Bike,	, ,
Signature	SDiTH,	Dilithium (NIST),
Security	Decoding problem	Learning with Errors

 \rightarrow Hard problem even for quantum computer

Complexity of best algorithms used to parametrize schemes.

Binary Decoding Problem

Binary Linear code
$$\rightarrow \mathscr{C} = \{ \mathbf{mG} : \mathbf{m} \in \mathbb{F}_2^n \}$$

Decoding at a **small** distance t

- Input: $(G, y = c + e) \in \mathbb{F}_2^{k \times n} \times \mathbb{F}_2^n$ where $c \in \mathscr{C}$ and |e| = t
- Output: e such that |e| = t and $y e \in \mathscr{C}$

Constraint e small Hamming weight → Make problem hard

Binary Decoding (Code)	Learning with Errors (Lattice)
\mathbb{F}_2	\mathbb{F}_q
Hamming weight	Euclidean norm

Hardness of decoding problem

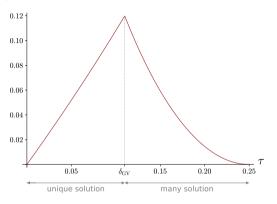


Figure: Complexity exponent of Prange algorithm $\alpha(\tau)$: Complexity $=2^{\alpha n}$, $\tau \stackrel{\triangle}{=} \frac{t}{n}$ at rate $R=\frac{k}{n}=\frac{1}{2}$

 $\delta_{\textit{GV}}$ maximum distance where typically unique solution

Setting for Dual Attacks

Dual code

$$\mathscr{C}^{\perp} = \{\mathbf{h} \in \mathbb{F}_2^n : \langle \mathbf{h}, \mathbf{c} \rangle = 0 \quad \forall \mathbf{c} \in \mathscr{C}\} \qquad \text{with} \qquad \langle \mathbf{x}, \mathbf{y} \rangle = \sum x_i \ y_i \pmod{q}$$

Compute dual vector $\mathbf{h} \in \mathscr{C}^{\perp}$

Observation:

Given
$$\mathbf{y} = \mathbf{c} + \mathbf{e}$$
 $\rightarrow \langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{c} + \mathbf{e}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle$

Exploit:

More biased toward 0 as $|\mathbf{e}|$ and $|\mathbf{h}|$ smaller.

Statistical decoding (Al-Jabri 2001)

Compute $h \in \mathscr{C}^{\perp}$ of low weight |h| = w such that $h_1 = 1$:

$$\langle \textbf{y},\textbf{h}\rangle = \langle \textbf{e},\textbf{h}\rangle = \sum \textbf{e}_i\textbf{h}_i = \textbf{e}_1 + \sum \textbf{e}_i\textbf{h}_i \sim \begin{cases} \mathrm{Bernouilli}\left(\frac{1-\epsilon}{2}\right) & \text{if } \textbf{e}_1 = 0 \\ \mathrm{Bernouilli}\left(\frac{1+\epsilon}{2}\right) & \text{if } \textbf{e}_1 = 1 \end{cases}$$

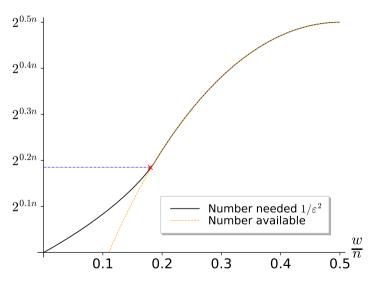
Compute N such dual vectors \rightarrow Decide with majority voting

How big must N be to make good decision?

Assumptions	Estimating $arepsilon$	Independence
	$\mathbf{h} \hookleftarrow \{ \mathbf{h} \in \mathbb{F}_2^n : \mathbf{h} = w \}$	$\langle \mathbf{y}, \mathbf{h} \rangle' s$ are Independent
	\forall Bias $arepsilon pprox \delta_{w}^{n}\left(t ight)$	$N>rac{1}{arepsilon^2}$

$$N > \frac{1}{\delta_{w}^{n}(t)^{2}}$$

Lower bound on the complexity of the algorithm



State of the art: performance of some decoders

- Information Set Decoders (ISD) [P62,D89,MMT11,BJMM12, BM17, BM18]
- Dual attacks : Statistical decoding (Al-Jabri 2001)

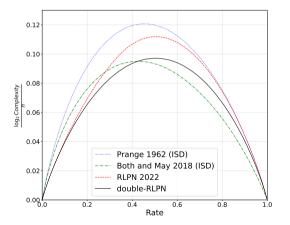


Figure: Rate = k/n. Decoding distance t at Gilbert-Varshamov. Complexity is in $2^{\alpha n}$.

Main ingredient: Splitting strategy (Reducing to LPN)

- ightarrow Suggested by [DT17]. All modern lattice-based dual attacks [Alb17,EJK20,GJ21,Matzov22]
- Split support in complementary part \mathscr{P} and $\mathscr{N} \to \mathsf{Recover} \ \mathbf{e}_{\mathscr{P}}$?

$$\rightarrow \langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = \langle \underbrace{\mathbf{e}_{\mathscr{P}}}_{\text{secret}}, \mathbf{h}_{\mathscr{P}} \rangle + \underbrace{\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle}_{\text{noise: biased to 0}}$$

LPN Problem

- Input: Many samples $(a, \langle a, s \rangle + e)$
 - $\mathbf{s} \in \mathbb{F}_2^s$ fixed secret
 - ightharpoonup a taken at random in \mathbb{F}_2^s
 - $e \sim \mathrm{Bern}(p)$
- Output: s

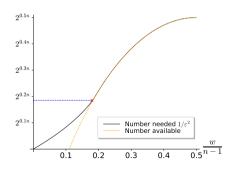
N dual vectors $\rightarrow N$ LPN samples

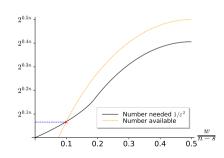
$$(\mathbf{a}, \langle \mathbf{s}, \mathbf{a} \rangle + e) \text{ w.t } \left\{ egin{array}{l} \mathbf{a} = \mathbf{h}_{\mathscr{P}} \in \mathbb{F}_{2}^{|\mathscr{P}|} \\ \mathbf{s} = \mathbf{e}_{\mathscr{P}} \\ e = \langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle \end{array} \right.$$

Hardness of this LPN problem

Supposing Independence assumption

$$N \geq rac{1}{\mathrm{bias}\left(\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle\right)^2}
ightarrow \mathsf{Can} \; \mathsf{recover} \; \mathsf{secret} \; \mathbf{e}_{\mathscr{P}} \ + \; \mathsf{approximate} \; \mathsf{bias} \; \mathsf{bias} \; \mathsf{bias} \; \delta_w \left(|\mathbf{e}_{\mathscr{N}}|\right)$$





Code-Based Contribution (1)

Significant improvement of statistical decoding

Decoding Problem

Complexity exponent α

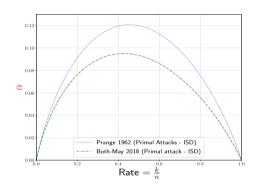


Figure: Complexity $2^{\alpha n}$

Code-Based Contribution (1)

Significant improvement of statistical decoding

↓
Reduced to LPN [CDMT22]

Decoding Problem

Complexity exponent α

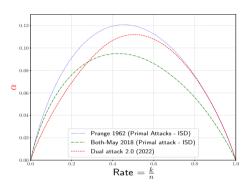


Figure: Complexity 2^{α} n

 \rightarrow Big gain for rather small rates

Code-Based Contribution (1)

Significant improvement of statistical decoding

Decoding Problem

↓

Reduced to sparse LPN [CDMT22]

↓

Reduced to plain LPN of smaller dim.

[CDMT24]

Complexity exponent α

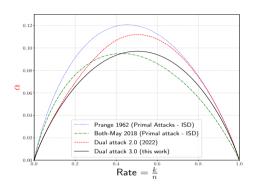


Figure: Complexity 2^{α} n

 \rightarrow Beats state of art for R < 0.42

Code-Based Contribution (2)

Contribution

New tools and tweaks to analyze dual attacks

- In [CDMT22] : Independence assumption not always experimentally accurate.
- Ducas & Pulles 2023 : Disprove independence assumptions for lattice-based dual attacks.

[MT23]

Independence Assumptions

↓ Replaced by

Poisson model

The weight enumerator of a random linear code is a Poisson variable.

To appear on eprint 2025

Fully prove, without any model, dual attacks

Outline of the presentation

Our dual attacks and their analysis

- Reducing decoding to solving an LPN problem
- LPN solvers
 - RLPN : FFT (Leveil & Fouque 2007)
 - doubleRLPN : Reduction sparse to plain LPN (Guo & Johansson 2014)
- Analysis
 - How the analysis is carried currently. Usage of Poisson model.
 - Fully provable variant.
- Quick comparison with lattice-based attacks

Section 2

Our dual attacks

Main ingredient : Splitting strategy (Reducing to LPN)

$$y = c + e$$

- Split support in complementary part \mathscr{P} and $\mathscr{N} \to \mathsf{Recover} \ \mathbf{e}_{\mathscr{P}}$?

$$\rightarrow \langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle = \langle \underbrace{\mathbf{e}_{\mathscr{P}}}_{\text{secret}}, \mathbf{h}_{\mathscr{P}} \rangle + \underbrace{\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle}_{\text{noise: biased to } \mathbf{e}_{\mathsf{N}}}$$

LPN Problem

- Input: Many samples $(a, \langle a, s \rangle + e)$
 - $\mathbf{s} \in \mathbb{F}_2^s$ fixed secret
 - ightharpoonup a taken at random in \mathbb{F}_2^s
 - $e \sim \mathrm{Bern}(p)$
- Output: s

N dual vectors $\rightarrow N$ LPN samples

$$(\mathbf{a}, \langle \mathbf{s}, \mathbf{a} \rangle + e) \text{ w.t } \left\{ \begin{array}{l} \mathbf{a} = \mathbf{h}_{\mathscr{P}} \in \mathbb{F}_{2}^{|\mathscr{P}|} \\ \mathbf{s} = \mathbf{e}_{\mathscr{P}} \\ e = \langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle \end{array} \right.$$

Key quantity: score function

$$\mathsf{LPN} \; \mathsf{sample} \; \langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}_\mathscr{P}, \mathbf{h}_\mathscr{P} \rangle + \langle \mathbf{h}_\mathscr{N}, \mathbf{e}_\mathscr{N} \rangle$$

$$\langle \mathbf{y},\mathbf{h}\rangle - \langle \mathbf{e}_\mathscr{P},\mathbf{h}_\mathscr{P}\rangle = \langle \mathbf{h}_\mathscr{N},\mathbf{e}_\mathscr{N}\rangle \to \mathsf{Biased\ toward\ 0}$$

Score function

For $\mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|}$ score function

$$\mathsf{F}(\mathsf{x}) \stackrel{\triangle}{=} \sum_{\mathsf{h}} (-1)^{\langle \mathsf{y}, \mathsf{h} \rangle - \langle \mathsf{x}, \mathsf{h}_{\mathscr{P}} \rangle}$$

General dual attack framework

Given \mathscr{C} and $\mathbf{y} = \mathbf{c} + \mathbf{e} \rightarrow \mathsf{Goal}$ recover \mathbf{e} :

- Choose subset $\mathscr P$ and $\mathscr N$ at random
- Compute N dual vector $\mathbf{h} \in \mathscr{C}^{\perp}$ s.t $|\mathbf{h}_{\mathscr{N}}| = \mathbf{w}$
 - With technique taken from ISD's.
 - ▶ Get LPN samples $\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{e}_{\mathscr{P}}, \mathbf{h}_{\mathscr{P}} \rangle + \langle \mathbf{h}_{\mathscr{N}}, \mathbf{e}_{\mathscr{N}} \rangle$
- Solve LPN problem : return set of candidate x for e_𝒯
 - Compute score function F
 - Keep candidates x such that F(x) > T big enough
- Test each candidate x for e_𝒯:
 - ▶ Solve smaller decoding problem at length $n |\mathcal{P}|$, dimension $k |\mathcal{P}|$.
 - Exponential cost
 - When $\mathbf{x} = \mathbf{e}_{\mathscr{P}}$ returns the rest of the error $\mathbf{e}_{\mathscr{N}}$

Next slides

Algorithm \rightarrow How to solve the LPN problem: Computing the set of candidates efficiently?

Analysis \rightarrow How to estimate the number of false candidates $\mathbf{x} \neq \mathbf{e}_{\mathscr{P}}$?

Subsection 1

LPN solvers

LPN solvers (1): FFT \rightarrow RLPN

We have computed N dual vectors \mathbf{h} . Compute for each $\mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|}$

$$\mathsf{F}(\mathsf{x}) \stackrel{\triangle}{=} \sum_{\mathsf{h}} (-1)^{\langle \mathsf{y}, \mathsf{h} \rangle - \langle \mathsf{x}, \mathsf{h}_{\mathscr{P}} \rangle}$$

Naive search

$$2^{|\mathscr{P}|} \times N$$

Leveil & Fouque 2006

Use a Fast Fourier Transform

$$|\mathscr{P}| \, 2^{|\mathscr{P}|} + N$$

 \rightarrow Exponential speed-up

LPN solvers (2): Remark

e_{\mathscr{P}} is sparse and yet FFT computes $F(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{F}_2^{|\mathscr{P}|}$

LPN sample :
$$\begin{pmatrix} \mathbf{a} & \mathbf{sparse} \\ \mathbf{a} & \mathbf{sparse} \\ \mathbf{f} & \mathbf{s} \end{pmatrix} + \mathbf{e}$$

$$\frac{\mathbf{Lower \ Dimension}}{\mathbf{Increase \ Noise}} \qquad \begin{pmatrix} \mathbf{a'} & \mathbf{s'} & \mathbf{a'} \\ \mathbf{a'} & \mathbf{s'} & \mathbf{s'} \end{pmatrix} + \mathbf{e'}$$

$$\begin{pmatrix} \mathbf{a}' \\ \\ \\ \mathbb{F}_2^{\leq |\mathscr{P}|} \end{pmatrix}, \ \langle \mathbf{s}' , \ \mathbf{a}' \rangle + e' \end{pmatrix}$$

New reduced plain LPN problem \rightarrow solve with FFT \rightarrow doubleRLPN

LPN solvers (3) : Reduction from sparse to plain LPN \rightarrow doubleRLPN

→ Technique by Guo & Johansson (2014)

$$\text{Linear code} \quad \mathscr{C}_{\text{aux}} \subset \mathbb{F}_2^{|\mathscr{S}|} \qquad \qquad \bullet \text{a} \\ \{ \mathsf{m}_{\text{aux}} \mathsf{G}_{\text{aux}} \colon \mathsf{m}_{\text{aux}} \in \mathbb{F}_2^{\text{dim}(\mathscr{C}_{\text{aux}})} \}$$

$$\langle \mathbf{s}, \mathbf{a} \rangle + e = \langle \mathbf{s}, \mathbf{c}_{\mathsf{aux}} \rangle + \underbrace{\langle \mathbf{s}, \mathbf{e}_{\mathsf{aux}} \rangle + e}_{e' \text{ new noise}}$$

$$\langle \mathbf{s}, \mathbf{c}_{\mathsf{aux}} \rangle = \langle \mathbf{s}, \mathbf{m}_{\mathsf{aux}} \mathbf{G}_{\mathsf{aux}} \rangle = \langle \mathbf{s} \mathbf{G}_{\mathsf{aux}}^{\top}, \mathbf{m}_{\mathsf{aux}} \rangle$$

Sample space $\mathbb{F}_2^{|\mathscr{P}|} \to \mathbb{F}_2^{\dim(\mathscr{C}_{\mathsf{aux}})}$ is smaller!

Subsection 2

Analysis: estimating the number of false candidates

Key question for the analysis

Set of candidates: \mathbf{x} such that $\mathbf{F}(\mathbf{x}) > T$

Under the condition that

$$N > \frac{n}{\delta^2}$$

$$\mathbb{P}\left(\mathsf{F}\left(\mathsf{x}
ight) > \mathbb{E}\left(\mathsf{F}\left(\mathsf{e}_{\mathscr{P}}
ight)
ight)
ight) \leq rac{1}{\mathrm{poly}\left(n
ight)}$$

$$\mathbb{P}\left(\mathsf{F}\left(\mathsf{x}\right) > \mathbb{E}\left(\mathsf{F}\left(\mathsf{e}_{\mathscr{P}}\right)\right)\right) \leq 2^{-\Theta(n)}$$

Complexity of the algorithm

Estimating number of false candidates **x** s.t $\mathbf{F}(\mathbf{x}) > T$

Key question

What is the **exponential tail** distribution of F(x)?

Distribution of the score function

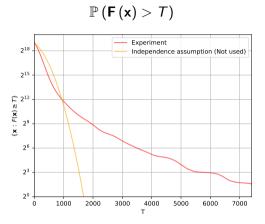


Figure: Distribution score function

Independence Assumptions

The terms in $\mathbf{F}(\mathbf{x}) = \sum_{\mathbf{h}} (-1)^{\langle \mathbf{y}, \mathbf{h} \rangle - \langle \mathbf{x}, \mathbf{h}_{\mathscr{P}} \rangle}$ are independent variables.

Under independence assumptions if

$$N > \frac{n}{\delta^2}$$

then

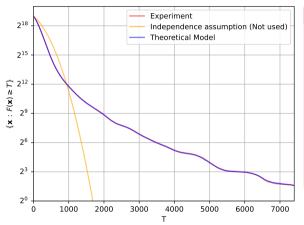
$$F(x) < F(e_{\mathscr{P}}) \quad \forall x \neq e_{\mathscr{P}}$$

 \rightarrow Can distinguish $e_{\mathscr{D}}$, no false candidate.

Independence Assumptions

Prediction of score function

$$\mathbb{P}\left(\mathbf{F}\left(\mathbf{x}\right) > T\right)$$



Theorem: Dual formula

$$F(\mathbf{x}) = \sum_{i \in \mathbb{N}} N_i \left(\mathscr{C}^{\mathscr{N}} + g(\mathbf{x}) \right) K_{\mathbf{w}}(i)$$

- $\mathscr{C}^{\mathcal{N}} \stackrel{\triangle}{=} \{ \mathbf{c}_{\mathcal{N}} : \mathbf{c} \in \mathscr{C} \text{ s.t } \mathbf{c}_{\mathscr{P}} = 0 \}$
- $N_i(\mathcal{D})$ number word of weight i of \mathcal{D}
- $K_w(i)$ is Krawtchouk polynomial
- \bullet $g(\mathbf{x})$ a known affine function

Proof: Poisson formula $+ \widehat{1_w} = K_w$

Model:

 $N_i(\mathcal{D}) \sim \text{Poisson}$ variable of good expected value

Number of false candidates

Theorem

Under the Poisson Model the number of false candidates when

$$N > \frac{n^8}{\delta^2}$$

- RLPN : poly (*n*)
- doubleRLPN : $2^{\alpha n}$ from some $\alpha > 0$ that we can compute

- \rightarrow Checking a false candidate has exponential cost.
- \rightarrow Complicates algorithms.
- ightarrow Overall cost of dealing with false candidates is negligible.

Section 3

Fully provable dual attack

Goal

Theorem

There exists an algorithm that has the same performance, up to polynomial factors, as (double)RLPN and that we can fully prove.

Easy to prove
$$\mathbb{P}\left(\mathsf{F}\left(\mathsf{x}\right) > \mathbb{E}\left(\mathsf{F}\left(\mathsf{e}_{\mathscr{P}}\right)\right)\right) \leq \frac{1}{\operatorname{poly}\left(n\right)}$$

Intractable $\mathbb{P}\left(\mathsf{F}\left(\mathsf{x}\right) > \mathbb{E}\left(\mathsf{F}\left(\mathsf{e}_{\mathscr{P}}\right)\right)\right) \leq 2^{-\Theta(n)}$

Make a variant whose proof rely only on the easy bound.

Main observation

$$\mathbf{y}^{(i)} \stackrel{\triangle}{=} \left\{ egin{array}{ll} \mathbf{y}_{\mathscr{P}}^{(i)} &= \mathbf{y}_{\mathscr{P}} \\ \mathbf{y}_{\mathscr{N}}^{(i)} &= \mathbf{y}_{\mathscr{N}} + \delta_i = \mathbf{c}_{\mathscr{N}} + \underbrace{\left(\mathbf{e}_{\mathscr{N}} + \delta_i\right)}_{\mathsf{New Error}} \end{array}
ight.$$

Noise of LPN sample $\langle \mathbf{y}^{(i)}, \mathbf{h} \rangle = \langle \mathbf{e}_{\mathscr{P}}, \mathbf{h}_{\mathscr{P}} \rangle + \langle \mathbf{e}_{\mathscr{N}} + \delta_i, \mathbf{h}_{\mathscr{N}} \rangle$ smaller if $\mathbf{e}_{\mathscr{N}} = 1$

$$\mathsf{F}_{i}\left(\mathsf{x}\right) = \sum_{\mathsf{h}} (-1)^{\left\langle \mathsf{y}^{(i)},\mathsf{h}\right\rangle - \left\langle \mathsf{x},\mathsf{h}_{\mathscr{D}}\right\rangle}$$

 \mathbf{F}_i is score when we flipped i'th bit of $\mathbf{y}_{\mathcal{N}}$

Main observation

If
$$\mathbf{e}_{\mathscr{N}} = 1$$
 expect $\mathbf{F}_{i}\left(\mathbf{e}_{\mathscr{P}}\right) > \mathbf{F}\left(\mathbf{e}_{\mathscr{P}}\right)$

Fully provable variant of RLPN

Algorithm

- ullet Compute score $oldsymbol{\mathsf{F}}, oldsymbol{\mathsf{F}}_1, \ oldsymbol{\mathsf{F}}_2, \ \cdots, \ oldsymbol{\mathsf{F}}_{|\mathscr{N}|}$
- For each x:
 - Guess that the *i*'th bit of $\mathbf{e}_{\mathcal{N}}$ is 1 if $\mathbf{F}_{i}(\mathbf{x}) > \mathbf{F}(\mathbf{x})$
 - ► Construct a vector $\mathbf{g}_{\mathscr{P}} = \mathbf{x}$ and $\mathbf{g}_{\mathscr{N}}$ guessed bits.
 - ▶ Test **g** solution to decoding problem: $|\mathbf{g}| = t$ and $\mathbf{y} \mathbf{g} \in \mathscr{C}$.

Complexity: Same up to polynomial factor as original attack

Analysis

Proposition

 $N > \frac{\text{poly}(n)}{s^2}$ then when $\mathbf{x} = \mathbf{e}_{\mathscr{P}}$ our guess on $\mathbf{e}_{\mathscr{N}}$ is good

Section 4

Lattices

LWE problem

LWE problem

- Input: $(G, y = c + e) \in \mathbb{F}_q^{k \times n} \times \mathbb{F}_q^n$ where $c \in \mathscr{C}$ and $e \sim \chi^n$
- Output: e

Dual attacks

- Compute small (Euclidean norm) dual vectors of $\mathbf{h} \in \mathscr{C}^{\perp}$ \rightarrow By sampling short vectors in Euclidean lattice $\Lambda = \mathscr{C}^{\perp} + a\mathbb{Z}^n$
- Exploit

$$\langle \mathbf{y}, \mathbf{h} \rangle = \langle \mathbf{c} + \mathbf{e}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle$$

is more biased toward small values of \mathbb{F}_q as **e** and **h** small

Score function

$$\mathbf{F} = \sum_{\mathbf{h}} \cos \left(rac{2\pi}{q} \left\langle \mathbf{y}, \mathbf{h}
ight
angle
ight)$$

Modern dual attacks

Same splitting strategy:

$$\langle \mathbf{y}, \mathbf{h}
angle = \langle \mathbf{e}_\mathscr{P}, \mathbf{h}_\mathscr{P}
angle + \langle \mathbf{e}_\mathscr{N}, \mathbf{h}_\mathscr{N}
angle$$

Solver: FFT too expensive as is in \mathbb{F}_q .

- Sparsification + FFT (Guo & Johansson 2021)
- ullet Modulus switching $(\mathbb{F}_q o \mathbb{F}_p) + \mathsf{FFT}$ (Matzov)
- Both claim to dent security of Kyber

Analysis:

- Ducas & Pulles 2022 showed that could not use independence assumptions to model score function. Does dual attack work?
- CMST24 & DP23: Model the score function
- CMST25 :
 - Dual attack: Decoding technique + FFT
 - ▶ Analyze : Generalize model and use it to analyze the attack.
 - Indeed dent security of Kyber

Conclusion

Thank you!