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Section 1

Introduction



Public-Key cryptography

Used for safe communication over insecure channel without pre-shared secret.

Bob

Hello
Alice!

Alice's
public key
6EB69570
0BE03CE4
Alice
\i
Hello
. Decrypt
Alice! Alice's
private key

RSA, DH
!

Hard computational problem

/]\

Easily solved by quantum computer
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Post-Quantum (Public-Key) cryptography

Lattice, Code, Multivariate, Isogenies )
Code-based Lattice-based
Encryption HQC (NIST), McEliece, Kyber (NIST),...
Bike, ...
Signature SDiTH,... Dilithium (NIST),...
Security Decoding problem Learning with Errors
— Hard problem even for quantum computer
Complexity of best algorithms used to parametrize schemes. J
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Binary Decoding Problem

Binary Linear code

Decoding at a small distance t

— ¢={mG : meF;}

o Input: (G,y=c+e)cFs*" xFj wherec€ € and |e| =t

@ Output: esuchthat|e|=tandy—ec @

Constraint e small Hamming weight — Make problem hard

Binary Decoding (Code)

Learning with Errors (Lattice)

1

Fq

Hamming weight

Euclidean norm
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Hardness of decoding problem
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Figure: Complexity exponent of Prange algorithm «a(7): Complexity =2*", 7

dgy maximum distance where typically unique solution J
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Setting for Dual Attacks

Dual code
¢t ={heF}: (h,c)=0 Vce%E} with (x,¥) =>_.x;y;i (mod q) J

Compute dual vector h € €+

Observation:
Giveny=c+e — (y,h) = (c+e,h) = (e,h) J
Exploit:

More biased toward 0 as |e| and |h| smaller. J
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Statistical decoding (Al-Jabri 2001)

Compute h € €+ of low weight |h| = w such that hy = 1:

B illi (15%) ifer=0
{y.h) =Y ehi=e1+ ) eih;~ {emou??(i) o

Bernouilli (125) ife; =1

Compute N such dual vectors — Decide with majority voting

How big must NV be to make good decision?
Assumptions Estimating ¢ Independence
h«~{hecF} : |h|=w} (y,h)’s are Independent
\J \J
Bias € = 4], (t) N>5i2
1

N > 5

oy (1)

8/39



Lower bound on the complexity of the algorithm

20.5n N
20.4n i
20.311 i
20.2n J
20.1n i 9

—— Number needed 1/¢

Number available
w

0.1 0.2 03 0.4 05"
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State of the art: performance of some decoders

o Information Set Decoders (ISD) [P62,D89,MMT11,BJMM12, BM17, BM18]
@ Dual attacks : Statistical decoding (Al-Jabri 2001)

0.12
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.y 0.08 :
Q
£le
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'
j
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0.02] 7 --—- Both and May 2018 (ISD) A\
=y RLPN 2022 '
/ —— double-RLPN
0-0%.0 0.2 0.4 0.6 0.8 1.0

Rate

Figure: Rate = k/n. Decoding distance t at Gilbert-Varshamov. Complexity is in 2*". 103



Main ingredient : Splitting strategy (Reducing to LPN)
— Suggested by [DT17]. All modern lattice-based dual attacks [Alb17,EJK20,GJ21,Matzov22]

e Split support in complementary part & and .4 — Recover e »?

e Compute dual vector h =} Z w (small) \
7 N
— ;h = euh ={ €y 7h/ + €, /7h N
(y,h) =(e;h) =(ex» ,hr)+ (e ,hy)
secret noise: biased to 0
LPN Problem
o Input: Many samples (a, (a,s) + ) N dual vectors — N LPN samples
s € I3 fixed secret a=hy € F\f’l
a taken at random in F3 (a,(s,a) +e)wt{ s=eyp
e ~ Bern (p) e=(ey,h )
@ QOutput: s
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Hardness of this LPN problem

Supposing Independence assumption

1
N > — Can recover secret e »

~ bias (e, h_s))?

+ approximate bias by ¢, (|e_s|)

90.5n —
-
//
0.5n
0.4n b
20.-’!7!
0.3
0.3 y
/ 2030
0.2
9020
201n —— Number needed 1/z2
Number available 90-1n —— Number needed 1/=*
T Number available
0.1 0.2 0.3 0.4 0.5 m=s

0.1 0.2 0.3 0.4 0.5
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Code-Based Contribution (1)

Significant improvement of statistical

decoding

J

Decoding Problem

[0}

Complexity exponent «

0.10

0.08
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Prange 1962 (Primal Attacks - I1SD)
~——- Both-May 2018 (Primal attack - ISD)
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Rate = £
n

Figure: Complexity 20N
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Code-Based Contribution (1)

Significant improvement of statistical
decoding

Complexity exponent «

0.12

0.10

v 0.08

Decoding Problem

1
Reduced to LPN [CDMT22)]

0.06

0.04

. Prange 1962 (Primal Attacks - 1SD)
21 i
i/ -——- Both-May 2018 (Primal attack - ISD)

yoo |- Dual attack 2.0 (2022)

0.0 072 074 076 0% L0

Rate = %
Figure: Complexity 20N

— Big gain for rather small rates
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Code-Based Contribution (1) Complexity exponent «

Significant improvement of statistical
decoding ) P
Decoding Problem
Reduced to sparse LPN [CDMT22]
\L 7 Prange 1962 (Primal Attacks - 1SD) “\
002 1// ———- Both-May 2018 (Primal attack - ISD)
1 H i/ | Dual attack 2.0 (2022) \
Reduced to plain LPN of smaller dim. J R N \
[CDMT24] %
J Rate = -

Figure: Complexity 20N

—Beats state of art for R < 0.42
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Code-Based Contribution (2)

Contribution
New tools and tweaks to analyze dual attacks J

@ In [CDMT22] : Independence assumption not always experimentally accurate. J

@ Ducas & Pulles 2023 : Disprove independence assumptions for lattice-based dual attacks.

[MT23] To appear on eprint 2025
independenee-Assumptions Fully prove, without any model, dual
1 Replaced by attacks

Poisson model

The weight enumerator of a random linear
code is a Poisson variable.
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Outline of the presentation

Our dual attacks and their analysis
@ Reducing decoding to solving an LPN problem

@ LPN solvers
RLPN : FFT (Leveil & Fouque 2007 )
doubleRLPN : Reduction sparse to plain LPN (Guo & Johansson 2014)

o Analysis
How the analysis is carried currently. Usage of Poisson model.

Fully provable variant.
@ Quick comparison with lattice-based attacks
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Section 2

Our dual attacks



Main ingredient : Splitting strategy (Reducing to LPN)
y=c+e

e Split support in complementary part & and .4~ — Recover e »?

e Compute dual vector h = /7777777777000 w (small) |
4 N
_><y’h> :<eah> :<e/yah,7>+ <e</V,h,1/>
secret noise: biased to 0
LPN Problem
- Tt My sEmes (o o) 4 @) N dual vectors — N LPN samples
s € I3 fixed secret a=hy € F‘zyl
a taken at random in F3 (a, (s,a) + e) w.t s=eyp
e ~ Bern (p) e={ey,hy)
o Output: s )
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Key quantity : score function

LPN sample (y,h) = (ez,hz) + (h.y,e)

(y,h) — (e»,hp) = (h_4,e ) — Biased toward 0

Score function

For x € F'z% score function

F(x) S50y
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General dual attack framework
Given € and y = ¢ + e — Goal recover e:

@ Choose subset & and .4 at random

Compute N dual vector h € €+ st |h 4| =w
» With technique taken from ISD’s.
» Get LPN samples (y,h) = (es,hg) + (h_y,e )

Solve LPN problem : return set of candidate x for e»
» Compute score function F
» Keep candidates x such that F(x) > T big enough

@ Test each candidate x for e »:
» Solve smaller decoding problem at length n — | 2|, dimension k — |Z|.
» Exponential cost
» When x = e returns the rest of the error e 4
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Next slides

Algorithm — How to solve the LPN problem: Computing the set of candidates efficiently?

Analysis — How to estimate the number of false candidates x # e 4?7
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Subsection 1

LPN solvers
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LPN solvers (1) : FFT — RLPN

We have computed N dual vectors h. Compute for each x € Fg@\

F(x)2 3 (1))

h

Naive search

2021« N

Leveil & Fouque 2006
Use a Fast Fourier Transform
2|27+ N

— Exponential speed-up

This FFT LPN solver inside our framework — RLPN [CDMT?22]
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LPN solvers (2) : Remark

e is sparse and yet FFT computes F(x) for all x € IE"f' J

General approach : dimension reduction

plain
sparse ) ) T
LPN sample : a,{s,a+e Lower Dimension, a ,(s,a)+¢
m Increase Noise m
72! FS12)
New reduced plain LPN problem — solve with FFT — doubleRLPN J

23 /39



LPN solvers (3) : Reduction from sparse to plain LPN — doubleRLPN

— Technique by Guo & Johansson (2014)

/. Caux S (gaux

: 2
Linear code %aux C IB‘|2 | €aux !
Il ° éa °

{mauxGaux - Maux Engm(%)aux)}

<S, a> +e= <S, Caux> + <57 eaux> T @
————

e’ new noise

A = Caux + €aux
~—~~

short

<Sacaux> = <57 mauxGaux> = <5G;rux7 maux>

Sample space IE“Z% — Fg'm(éa”x) is smaller!
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Subsection 2

Analysis : estimating the number of false candidates
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Key question for the analysis
Set of candidates: x such that F(x) > T

Under the condition that

n
N > 52
Easy to prove P(F(x) > E(F(ex))) < L
Yo 777 = poly (n)

Intractable P(F(x) > E(F(ex))) < 2—6(n)

Complexity of the algorithm

0

Estimating number of false candidates x s.t F(x) > T

Key question
What is the exponential tail distribution of F (x)?

26 / 39



Distribution of the score function

P(F(x)>T)
—— Experiment

218 Independence assumption (Not used)

215 |
o2
N
X
o2
x
o

26 4

23]

20 T T T T T T T

0 1000 2000 3000 4000 5000 6000 7000

T

Figure: Distribution score function

Independence Assumptions

The terms in F (x) = >, (=1)¥"
independent variables.

xhz) are

Under independence assumptions if

n
N>5_2

then
F(X) < F(eg) VX £ ep

— Can distinguish e, no false candidate.

Independence-Assumptions
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Prediction of score function

P(F(x)>T)

—— Experiment
Independence assumption (Not used)
—— Theoretical Model

1000 2000 3000 4000 5000 6000 7000
T

Theorem : Dual formula

F) =N (€ +2(x) Kuli)

ieN

o%”é{cﬂ/ . cECstcyp =0}

e N;(2) number word of weight i of 2

e K, (i) is Krawtchouk polynomial

@ g (x) a known affine function

Proof: Poisson formula + ﬂ =K,

Model: N; (2) ~ Poisson variable of good expected value
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Number of false candidates

Theorem
Under the Poisson Model the number of false candidates when

n8

N>5f2

@ RLPN : poly (n)

@ doubleRLPN : 2%" from some « > 0 that we can compute

— Checking a false candidate has exponential cost.
— Complicates algorithms.

— Overall cost of dealing with false candidates is negligible.
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Section 3

Fully provable dual attack



Goal

Theorem

There exists an algorithm that has the same performance, up to polynomial factors, as

(double)RLPN and that we can fully prove.

Easy to prove P (F(x) > E (F(ex))) < pol;(n)

Intractable P (F (x) > E (F (e»))) < 279"

Make a variant whose proof rely only on the easy bound.
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Main observation

(1)

@z =Yz
MOES SO _ .
Y =yy+di=cy+(ey+46)
———

New Error

Noise of LPN sample <y(i),h> = (ew,hx) + (e y + 0i,h ) smallerifey =1

Fi(x) = Y (~1)¥ORehe)

h

F; is score when we flipped i'th bit of y 4

Main observation
If ey =1 expect F;(es) > F (e»)
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Fully provable variant of RLPN

Algorithm

o Compute score F,Fy, Fo, --- | F) 4
@ For each x:
Guess that the j'th bit of e 4 is 1 if F; (x) > F(x)

Construct a vector go = x and g_s guessed bits.
Test g solution to decoding problem: |g| =t andy —g € %.

Complexity : Same up to polynomial factor as original attack
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Analysis

Proposition

poly (n)

If N > 52

then when x = e our guess on e 4 is good
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Section 4

Lattices



LWE problem

LWE problem
o Input: (G,y =c+e)eFiX" xF) where c€ ¢ and e ~ X"
o Output: e
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Dual attacks

o Compute small (Euclidean norm) dual vectors of h € €+
— By sampling short vectors in Euclidean lattice A = €+ + gZ"

o Exploit
(y,h) = (c+e,h) = (e, h)

is more biased toward small values of F; as e and h small

Score function

F= zh:cos <2;T {y, h>>
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Modern dual attacks
Same splitting strategy:

(y,h) = (ex,hp) + (e, hy)

Solver: FFT too expensive as is in Fg.
@ Sparsification + FFT (Guo & Johansson 2021)
e Modulus switching (Fq — Fp) + FFT (Matzov)
@ Both claim to dent security of Kyber
Analysis:
@ Ducas & Pulles 2022 showed that could not use independence assumptions to model
score function. Does dual attack work?
o CMST24 & DP23: Model the score function
o CMST25 :
» Dual attack: Decoding technique + FFT
» Analyze : Generalize model and use it to analyze the attack.
» Indeed dent security of Kyber
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Conclusion

Thank you!
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