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Section 1

Introduction



Public-Key cryptography

Used for safe communication over insecure channel without pre-shared secret.

RSA, DH
↓

Hard computational problem
↑

Easily solved by quantum computer
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Post-Quantum (Public-Key) cryptography

Lattice, Code, Multivariate, Isogenies

Code-based Lattice-based

Encryption HQC (NIST), McEliece,
Bike, ...

Kyber (NIST),...

Signature SDiTH,... Dilithium (NIST),...

Security Decoding problem Learning with Errors

→ Hard problem even for quantum computer

Complexity of best algorithms used to parametrize schemes.
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Binary Decoding Problem

Binary Linear code → C = { mG : m ∈ Fn
2}

Decoding at a small distance t

Input: (G, y = c+ e) ∈ Fk×n
2 × Fn

2 where c ∈ C and |e| = t

Output: e such that |e| = t and y − e ∈ C

Constraint e small Hamming weight → Make problem hard

Binary Decoding (Code) Learning with Errors (Lattice)

F2 Fq

Hamming weight Euclidean norm
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Hardness of decoding problem
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Figure: Complexity exponent of Prange algorithm α(τ): Complexity = 2α n, τ
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Setting for Dual Attacks

Dual code

C⊥ = {h ∈ Fn
2 : ⟨h, c⟩ = 0 ∀c ∈ C } with ⟨x, y⟩ =

∑
xi yi (mod q)

Compute dual vector h ∈ C⊥

Observation:

Given y = c+ e → ⟨y,h⟩ = ⟨c+ e,h⟩ = ⟨e,h⟩

Exploit:

More biased toward 0 as |e| and |h| smaller.
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Statistical decoding (Al-Jabri 2001)
Compute h ∈ C⊥ of low weight |h| = w such that h1 = 1:

⟨y,h⟩ = ⟨e,h⟩ =
∑

eihi = e1 +
∑

eihi ∼

{
Bernouilli

(
1−ε
2

)
if e1 = 0

Bernouilli
(
1+ε
2

)
if e1 = 1

Compute N such dual vectors → Decide with majority voting

How big must N be to make good decision?

Assumptions Estimating ε Independence
h←↩ { h ∈ Fn

2 : |h| = w} ⟨y,h⟩′ s are Independent
↓ ↓

Bias ε ≈ δnw (t) N > 1
ε2

N >
1

δnw (t)2
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Lower bound on the complexity of the algorithm
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State of the art: performance of some decoders
Information Set Decoders (ISD) [P62,D89,MMT11,BJMM12, BM17, BM18]
Dual attacks : Statistical decoding (Al-Jabri 2001)
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Figure: Rate = k/n. Decoding distance t at Gilbert-Varshamov. Complexity is in 2αn.
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Main ingredient : Splitting strategy (Reducing to LPN)
→ Suggested by [DT17]. All modern lattice-based dual attacks [Alb17,EJK20,GJ21,Matzov22]

• Split support in complementary part P and N → Recover eP?

• Compute dual vector h = w (small)

P N

→ ⟨y,h⟩ = ⟨e,h⟩ = ⟨ eP︸︷︷︸
secret

,hP⟩+ ⟨eN ,hN ⟩︸ ︷︷ ︸
noise: biased to 0

LPN Problem

Input: Many samples (a, ⟨a, s⟩+ e)
▶ s ∈ Fs

2 fixed secret
▶ a taken at random in Fs

2
▶ e ∼ Bern (p)

Output: s

N dual vectors → N LPN samples

(a, ⟨s, a⟩+ e) w.t

 a = hP ∈ F|P|
2

s = eP

e = ⟨eN ,hN ⟩
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Hardness of this LPN problem

Supposing Independence assumption

N ≥ 1

bias (⟨eN ,hN ⟩)2
→ Can recover secret eP

+ approximate bias by δw (|eN |)
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Code-Based Contribution (1)

Significant improvement of statistical
decoding

Decoding Problem

Complexity exponent α
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Code-Based Contribution (1)

Significant improvement of statistical
decoding

Decoding Problem
↓

Reduced to LPN [CDMT22]

Complexity exponent α
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Dual attack 2.0 (2022)

Figure: Complexity 2α n

→ Big gain for rather small rates
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Code-Based Contribution (1)

Significant improvement of statistical
decoding

Decoding Problem
↓

Reduced to sparse LPN [CDMT22]
↓

Reduced to plain LPN of smaller dim.
[CDMT24]

Complexity exponent α
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Dual attack 3.0 (this work)

Figure: Complexity 2α n

→Beats state of art for R < 0.42
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Code-Based Contribution (2)

Contribution

New tools and tweaks to analyze dual attacks

In [CDMT22] : Independence assumption not always experimentally accurate.

Ducas & Pulles 2023 : Disprove independence assumptions for lattice-based dual attacks.

[MT23]

Independence Assumptions
↓ Replaced by

Poisson model

The weight enumerator of a random linear
code is a Poisson variable.

To appear on eprint 2025

Fully prove, without any model, dual
attacks
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Outline of the presentation

Our dual attacks and their analysis

Reducing decoding to solving an LPN problem

LPN solvers
▶ RLPN : FFT (Leveil & Fouque 2007 )
▶ doubleRLPN : Reduction sparse to plain LPN (Guo & Johansson 2014)

Analysis
▶ How the analysis is carried currently. Usage of Poisson model.
▶ Fully provable variant.

Quick comparison with lattice-based attacks
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Section 2

Our dual attacks



Main ingredient : Splitting strategy (Reducing to LPN)

y = c+ e

• Split support in complementary part P and N → Recover eP?

• Compute dual vector h = w (small)

P N

→ ⟨y,h⟩ = ⟨e,h⟩ = ⟨ eP︸︷︷︸
secret

,hP⟩+ ⟨eN ,hN ⟩︸ ︷︷ ︸
noise: biased to 0

LPN Problem

Input: Many samples (a, ⟨a, s⟩+ e)
▶ s ∈ Fs

2 fixed secret
▶ a taken at random in Fs

2
▶ e ∼ Bern (p)

Output: s

N dual vectors → N LPN samples

(a, ⟨s, a⟩+ e) w.t

 a = hP ∈ F|P|
2

s = eP

e = ⟨eN ,hN ⟩
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Key quantity : score function

LPN sample ⟨y,h⟩ = ⟨eP ,hP⟩+ ⟨hN , eN ⟩

⟨y,h⟩ − ⟨eP ,hP⟩ = ⟨hN , eN ⟩ → Biased toward 0

Score function

For x ∈ F|P|
2 score function

F (x)
△
=
∑
h

(−1)⟨y,h⟩−⟨x,hP⟩
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General dual attack framework
Given C and y = c+ e → Goal recover e:

Choose subset P and N at random

Compute N dual vector h ∈ C⊥ s.t |hN | = w
▶ With technique taken from ISD’s.
▶ Get LPN samples ⟨y,h⟩ = ⟨eP ,hP⟩+ ⟨hN , eN ⟩

Solve LPN problem : return set of candidate x for eP
▶ Compute score function F
▶ Keep candidates x such that F (x) > T big enough

Test each candidate x for eP :
▶ Solve smaller decoding problem at length n − |P|, dimension k − |P|.
▶ Exponential cost
▶ When x = eP returns the rest of the error eN
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Next slides

Algorithm → How to solve the LPN problem: Computing the set of candidates efficiently?

Analysis → How to estimate the number of false candidates x ̸= eP?
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Subsection 1

LPN solvers
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LPN solvers (1) : FFT → RLPN
We have computed N dual vectors h. Compute for each x ∈ F|P|

2

F (x)
△
=
∑
h

(−1)⟨y,h⟩−⟨x,hP⟩

Naive search

2|P| × N

Leveil & Fouque 2006

Use a Fast Fourier Transform
|P| 2|P| + N

→ Exponential speed-up

This FFT LPN solver inside our framework → RLPN [CDMT22]
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LPN solvers (2) : Remark

eP is sparse and yet FFT computes F (x) for all x ∈ F|P|
2

General approach : dimension reduction

LPN sample :

 a∈

F|P|
2

, ⟨
sparse

↑
s , a⟩+ e

 Lower Dimension−−−−−−−−−−→
Increase Noise

 a′∈

F≤ |P|
2

, ⟨

plain

↑
s′ , a′⟩+ e ′



New reduced plain LPN problem → solve with FFT → doubleRLPN
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LPN solvers (3) : Reduction from sparse to plain LPN → doubleRLPN

→ Technique by Guo & Johansson (2014)

Linear code Caux
=

{mauxGaux : maux∈Fdim(Caux)
2 }

⊂ F|P|
2

caux ∈ Caux

a
eaux a = caux + eaux︸︷︷︸

short

⟨s, a⟩+ e = ⟨s, caux⟩+ ⟨s, eaux⟩+ e︸ ︷︷ ︸
e′ new noise

⟨s, caux⟩ = ⟨s,mauxGaux⟩ = ⟨sG⊤
aux,maux⟩

Sample space F|P|
2 → Fdim(Caux)

2 is smaller!
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Subsection 2

Analysis : estimating the number of false candidates
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Key question for the analysis

Set of candidates: x such that F (x) > T

Under the condition that
N >

n

δ2

Easy to prove P (F (x) > E (F (eP))) ≤ 1

poly (n)

Intractable P (F (x) > E (F (eP))) ≤ 2−Θ(n)

Complexity of the algorithm
↓

Estimating number of false candidates x s.t F (x) > T

Key question

What is the exponential tail distribution of F (x)?
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Distribution of the score function

P (F (x) > T )
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Figure: Distribution score function

Independence Assumptions

The terms in F (x) =
∑

h(−1)⟨y,h⟩−⟨x,hP⟩ are
independent variables.

Under independence assumptions if

N >
n

δ2

then

F (x) < F (eP) ∀x ̸= eP

→ Can distinguish eP , no false candidate.

Independence Assumptions
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Prediction of score function

P (F (x) > T )
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Theoretical Model

Theorem : Dual formula

F (x) =
∑
i∈N

Ni

(
C N + g(x)

)
Kw (i)

C N △
={cN : c ∈ C s.t cP = 0 }

Ni (D) number word of weight i of D

Kw (i) is Krawtchouk polynomial

g (x) a known affine function

Proof: Poisson formula + 1̂w = Kw

Model: Ni (D) ∼ Poisson variable of good expected value

28 / 39



Number of false candidates

Theorem

Under the Poisson Model the number of false candidates when

N >
n8

δ2

RLPN : poly (n)

doubleRLPN : 2αn from some α > 0 that we can compute

→ Checking a false candidate has exponential cost.
→ Complicates algorithms.
→ Overall cost of dealing with false candidates is negligible.
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Section 3

Fully provable dual attack



Goal

Theorem

There exists an algorithm that has the same performance, up to polynomial factors, as
(double)RLPN and that we can fully prove.

↓

Easy to prove P (F (x) > E (F (eP))) ≤ 1

poly (n)

Intractable P (F (x) > E (F (eP))) ≤ 2−Θ(n)

Make a variant whose proof rely only on the easy bound.
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Main observation

y(i)
△
=


y
(i)
P = yP

y
(i)
N = yN + δi = cN + (eN + δi )︸ ︷︷ ︸

New Error

Noise of LPN sample
〈
y(i),h

〉
= ⟨eP ,hP⟩+ ⟨eN + δi ,hN ⟩ smaller if eN = 1

Fi (x) =
∑
h

(−1)⟨y(i),h⟩−⟨x,hP⟩

Fi is score when we flipped i ’th bit of yN

Main observation

If eN = 1 expect Fi (eP) > F (eP)
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Fully provable variant of RLPN

Algorithm

Compute score F,F1, F2, · · · , F|N |
For each x:

▶ Guess that the i ’th bit of eN is 1 if Fi (x) > F (x)
▶ Construct a vector gP = x and gN guessed bits.
▶ Test g solution to decoding problem: |g| = t and y − g ∈ C .

Complexity : Same up to polynomial factor as original attack
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Analysis

Proposition

If N >
poly (n)

δ2
then when x = eP our guess on eN is good
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Section 4

Lattices



LWE problem

LWE problem

Input: (G, y = c+ e) ∈ Fk×n
q × Fn

q where c ∈ C and e ∼ χn

Output: e
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Dual attacks

Compute small (Euclidean norm) dual vectors of h ∈ C⊥

→ By sampling short vectors in Euclidean lattice Λ = C⊥ + qZn

Exploit
⟨y,h⟩ = ⟨c+ e,h⟩ = ⟨e,h⟩

is more biased toward small values of Fq as e and h small

Score function

F =
∑
h

cos

(
2π

q
⟨y,h⟩

)
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Modern dual attacks
Same splitting strategy:

⟨y,h⟩ = ⟨eP ,hP⟩+ ⟨eN ,hN ⟩

Solver: FFT too expensive as is in Fq.

Sparsification + FFT (Guo & Johansson 2021)
Modulus switching (Fq → Fp) + FFT (Matzov)
Both claim to dent security of Kyber

Analysis:

Ducas & Pulles 2022 showed that could not use independence assumptions to model
score function. Does dual attack work?
CMST24 & DP23: Model the score function
CMST25 :

▶ Dual attack: Decoding technique + FFT
▶ Analyze : Generalize model and use it to analyze the attack.
▶ Indeed dent security of Kyber
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Conclusion

Thank you!
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