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Brief Overview of Deep Neural Networks 
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Model inversion

Adversarial examples

Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, ACM SIGSAc 2015

Model extraction

Poisoning

Attacks Against Deep Neural Networks 

SemSecuElec 2025Hard-Label Cryptanalytic Extraction of DNNs



4

 Obtain a copy of the targeted DNN
 Stealing the Intellectual Property
 Possibility to mount more powerful attack on the targeted DNN

 3 broad methodologies
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Target

Prediction : 2, 1,
7

Training on the output of the targeted model

 Obtain a copy of the targeted DNN
 Stealing the Intellectual Property
 Possibility to mount more powerful attack on the targeted DNN

 3 broad methodologies
 Active learning [1]

Model Extraction: State-Of-The-Art
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Target

Infer information by comparing 
faulted predictions with correct ones

Prediction : 7

 Obtain a copy of the targeted DNN
 Stealing the Intellectual Property
 Possibility to mount more powerful attack on the targeted DNN

 3 broad methodologies
 Active learning [1]
 Hardware attacks (Fault Injection [2] or Side Channel [3])
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 Obtain a copy of the targeted DNN
 Stealing the Intellectual Property
 Possibility to mount more powerful attack on the targeted DNN

 3 broad methodologies
 Active learning [1]
 Hardware attacks (Fault Injection [2] or Side Channel [3])
 Cryptanalytical extraction[4, 5, 6]

• Analogy between the weights and the key
• Input becomes the message
• Output is equivalent to cipher text
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Model Extraction: Cryptanalysis

 Special case of networks using ReLU function

Z < 0 : State 
inactive

Z > 0 : State 
active

ReLU(x) = max(0,x)
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Z < 0 : State inactive

Z > 0 : State active

X1

X2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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Complexity of Linear Regions in Deep Networks, ICML 2019

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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V1

V2

Model Extraction: Cryptanalysis

 Special case of networks using ReLU function
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With :
- the weights of the targeted neuron 𝜂
- the bias of the targeted neuron 𝜂
- the activations values of the previous layer 

associated with input 
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 Global methodology

 Search for points on the 
hyperplanes: the critical points

V1

V2

Model Extraction: Cryptanalysis
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V1

V2

Model Extraction: Cryptanalysis

 Global methodology

 Search for points on the 
hyperplanes: the critical points

 Retrieve the equations of the 
hyperplane and the weights
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V1

V2

Model Extraction: Cryptanalysis

 Global methodology

 Search for points on the 
hyperplanes: the critical points

 Retrieve the equations of the 
hyperplane and the weights

 Get the sign of the neuron
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 Search for the critical points is the 
crucial step

 Highly dependent on the gradient

 Current limitations

Issue Solution

Hard-label settings Adaptation with dual points

Restriction to fully 
connected layers

None

Special cases of neurons None

V1

V2

Model Extraction: Cryptanalysis
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 Hard-label settings

Model Extraction: Limitations

SemSecuElec 2025

Polynomial Time Cryptanalytic Extraction of Deep Neural Networks in the Hard-Label Setting, EuroCrypt 2025

Hard-Label Cryptanalytic Extraction of DNNs
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 Restriction to fully-connected layers

Model Extraction: Limitations

SemSecuElec 2025

 Wrong estimation of 
the dual points

 Pooling layer change 
the geometry of the 
decision boundary
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 Impact of special cases of neurons

Model Extraction: Limitations

SemSecuElec 2025

Extracted neuron Targeted neuron Unknown neuron
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 Impact of special cases of neurons

X1

X2

Model Extraction: Limitations

SemSecuElec 2025

X1

X2

N2

N3

N3

N1

N2

N3

N4

N1
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 Impact of special cases of neurons

X1

X2

Model Extraction: Limitations

SemSecuElec 2025

X1

X2

N2

N3

N3

N1
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N3

N4

N1
Nt

Nt
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 Impact of special cases of neurons

X1

X2

Model Extraction: Limitations

SemSecuElec 2025
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 Impact of special cases of neurons

X1

X2

Model Extraction: Limitations

SemSecuElec 2025

X1

X2

N2

N3

N3

N1

N2

N3

N4

N1
Nt

Nt

Weight associated with this 
connection can never be estimated
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 Current limitations

Issue Solution

Hard-label settings Adaptation with dual points

Restriction to fully connected 
layers

None

Special cases of neurons None

Model Extraction: Cryptanalysis

SemSecuElec 2025

Can we use side-channel to propose a robust framework for cryptanalytical
extraction of complex DNN in hard-label settings ?

Hard-Label Cryptanalytic Extraction of DNNs
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Model Extraction: Side-Channel

 ReLU implementation
 ARM CMSIS-NN, open source

Z < 0 : State inactive
Mask : 00000000

Z > 0 : State active
Mask : 11111111

V1

V2
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 Different states have different electromagnetic traces

Z < 0 : State inactive
Mask : 00000000

Z > 0 : State active
Mask : 11111111

V1

V2

Model Extraction: Side-Channel
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Model Extraction: Divide-And-Conquer
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Model Extraction: Divide-And-Conquer
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Sequential 
extraction of 
the subparts

Hard-Label Cryptanalytic Extraction of DNNs

Model Extraction: Divide-And-Conquer
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MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017

 Takes advantage of the fact that 
the order is Conv – BN -
Activation

 Allows to split the model at each 
layer

Hard-Label Cryptanalytic Extraction of DNNs

Model Extraction: Divide-And-Conquer
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MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017

 Subdivision only impacts the 
extraction of the last layer

 In most architecture the pooling is 
directly after the activation layer

 Equivalent to a transformation on 
known inputs

Hard-Label Cryptanalytic Extraction of DNNs

Model Extraction: Divide-And-Conquer
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Model Extraction: Special Cases Of Neurons

SemSecuElec 2025

Special case of neuron

Hard-Label Cryptanalytic Extraction of DNNs
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Model Extraction: Special Cases Of Neurons
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Model Extraction: Our Method
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Model Extraction: Our Method
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Model Extraction: Our Method



44SemSecuElec 2025Hard-Label Cryptanalytic Extraction of DNNs

Model Extraction: Our Method
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Model Extraction: Target

 Targeted DNN
 Truncated version of 

MobileNetv1
 11 layers (Depthwise Separable 

convolutions + batchnorm + 
ReLU)

 Hardware 
 STM32F767ZI
 X-Cube-AI
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Model Extraction: Results

 State extraction for 15 neurons in a layer
 Signal to noise ratio on the state of the neuron

 Success rate in one EM trace: 86.3% (k-means algorithm)

SemSecuElec 2025Hard-Label Cryptanalytic Extraction of DNNs
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 Metrics used for classifier: Fidelity, Accuracy Under Attack and Number of 
queries

 Fidelity: percentage of label agreement between the stolen and the targeted 
model (different from accuracy)

 Accuracy Under Attack: transfer rate of adversarial examples generated on the 
stolen model to the target

 Number of queries: number of random queries made to the targeted model 
(results are given under the assumption that the state of the neuron is 
obtained in one trace)

Model Extraction: Results
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 Metrics used for classifier: Fidelity, Accuracy Under Attack and Number of 
queries

 One query corresponds to a prediction made by the model on random 
data (220 ~ 1 000 000)

Architecture Parameters Number of queries Fidelity Accuracy Under Attack

3072-256-256-
256-64-10

935 370 226.2 97.2% 98.6%

3072-512-256-
64-10

1 721 802 226.0 93.2% 96.7%

Truncated
MobileNetv1

5 234 218.8 88.4% 95.7%

Model Extraction: Results
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Model Extraction vs Active Learning

SemSecuElec 2025

Target

Prediction : 2, 1,
7

Training on the output with random 
data of the targeted model

 Comparison with Simple Active Learning on the truncated MobileNetv1

Hard-Label Cryptanalytic Extraction of DNNs
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Model Extraction vs Active Learning

SemSecuElec 2025

Target

Prediction : 2, 1,
7

Training on the output with random 
data of the targeted model

 Comparison with Simple Active Learning on the truncated MobileNetv1
 Training with the same hyperparameters and a balanced dataset
 Achieve 56% of accuracy on the random dataset
 Accuracy of 19.6% and Fidelity of 21.1% on the CIFAR-10 dataset

Hard-Label Cryptanalytic Extraction of DNNs
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Model Extraction: Special Case Neurons

SemSecuElec 2025

Metrics associated with the special neurons for the 
3072-512-256-64-10 MLP

 Number of special neurons
 Increases with the depth of 

the layer
 Most of them correspond 

to input-off
 Framework improves the 

efficiency on their 
extraction

 Trade off between 
requests and precision

 Number of request for these 
neurons

Hard-Label Cryptanalytic Extraction of DNNs
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 Propagation of error between the layers
 Small error on the estimation of the weights
 Dependent on the data format 
 Accumulate from one layer to another

 Maximum number of layers that can be extracted (dependent on the 
data format)

Evolution of the error on the truncated MobileNetv1

Hard-Label Cryptanalytic Extraction of DNNs

Model Extraction: Limitations Of The Method
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Model Extraction: Limitations Of The Method

SemSecuElec 2025

 Impact of the last layer
 Error increases by a factor of 256 for 32-bit data and by a factor of nearly 600 

000 for 64-bit data

 Fidelity remains at 88.4% between the targeted model and the stolen one

Evolution of the error on the truncated MobileNetv1

Hard-Label Cryptanalytic Extraction of DNNs
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 Impact of the last layer

Evolution of the error on the truncated MobileNetv1

2
Hard-Label 

setting

Extracted Parameters Unknown

Hard-Label Cryptanalytic Extraction of DNNs

Model Extraction: Limitations Of The Method
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 Impact of the last layer

Evolution of the error on the truncated MobileNetv1

2
Hard-Label 

setting

Extracted Parameters Unknown

No ReLU function

Hard-Label Cryptanalytic Extraction of DNNs

Model Extraction: Limitations Of The Method



56SemSecuElec 2025

 Impact of the last layer
 Extraction via supervised learning 
 Dataset composed of the activation of the previous layer and the hard-label
 Cause major drop in fidelity

 Hybrid model composed of the first eleventh extracted layer and the true 
last layer 

 Achieve 99.6% of fidelity

Evolution of the error on the truncated MobileNetv1

Hard-Label Cryptanalytic Extraction of DNNs

Model Extraction: Limitations Of The Method
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 Results from simulation with 64-bits data for regression tasks

 One query corresponds to a prediction made by the model on random 
data (220 ~ 1 000 000; 2−41 ~ 4 × 10−13)

Architecture
(Regression task)

Parameters Number of queries 𝒎𝒂𝒙 𝜃 − መ𝜃

784-128-1 100 480 222.6

𝟐𝟐𝟏.𝟓 [5]
𝟐−𝟒𝟎.𝟖

2−29.4 [5]

10-20-20-1 620 𝟐𝟏𝟓.𝟔

217.1 [5]
𝟐−𝟒𝟔.𝟓

2−37 [5]

40-20-10-10-1 1 110 𝟐𝟏𝟔.𝟖

217.8 [5]
𝟐−𝟒𝟐.𝟎

2−27.1 [5]

x2

x4

x2

x2 700

x700

x32 000

Model Extraction: Results
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Conclusion

 Conclusion
 Fidelity-based model extraction of a complex DNN in hard-label settings
 Complementarity between hardware and software attacks
 Paper under review
 Extend this work on more complex architecture
 Evaluate the impact of the data representation on the attack

 ST was noticed in September 2024
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 Complete results with 32-bit data

Hard-Label Cryptanalytic Extraction of DNNs
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 Complete results with 64-bit data
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